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ABSTRACT 

This dissertation develops a theoretical model that explains differences in 

emission reductions of transboundary air pollutants among nations based on national 

income, political freedom, the cost of emission reductions, emissions from other countries, 

the type of pollutant, and the pollutant's dispersion characteristics. The model is based on 

the theory of the private provision of impure public goods. This theoretical model is then 

used to derive a reduced form demand equation for emission reductions that can be 

econometrically estimated using spatial autoregressive techniques that have been modified 

to use time-series cross-section data. 

The econometric model is applied to 25 European nations and covers the 

period from 1980 to 1990. These 25 nations were signatories to the Helsinki Protocol of 

1985, which mandated reductions in sulfur dioxide (SO2), and the Sofia Protocol of 1988, 

which limited emissions of nitrogen oxides (NO*)- The signing of these treaties indicated a 

recognition of the problems caused by acid rain and ozone pollution, yet the two treaties 

had very different requirements regarding emission reductions, and in addition, nations 

were much more likely to meet the requirements of the Helsinki Protocol than the Sofia 

Protocol. By taking into account the differences between nations and the different 

characteristics of the pollutants, my model allows a closer examination of the reasons for 

the differences in treaty requirements and treaty adherence. 

The regression results can answer the following questions. First, did a nation's 

behavior change after a treaty was signed? Second, which factors were most important in 
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determining the level of emission reductions? Third, what difference does the pollutant 

type make in determining the level of emission reductions? 

Results based on pre- and post-treaty data for SO2 and NO, emission 

reductions indicate that nations follow a Nash-subscription model in choosing their 

emission reductions. In other words, nations tend to free ride on the emission reductions 

of other nations. The spatial autoregressive model performs convincingly for sulfur, 

showing in addition, that national income, the degree of political freedom, the percentage 

of a nation's emissions deposited on itself, and several other variables have a significant 

influence on the level of emission reductions. The model for NO* is less satisfying. While 

nations continue to exhibit Nash behavior, the other variables fail to be significant or have 

the wrong sign. It turns out however that these results may be explained as resulting from 

the characteristic nature of NO* as compared with sulfur. NO* diffuses more rapidly in the 

air, stays up longer, and originates from a larger number of sources making it harder to 

control. Furthermore, nations are less likely to experience the harmful nature of their own 

NOx emissions. 

A better understanding of the factors that influence a nation's decision to 

reduce its emissions may provide a foundation for the negotiation of future transboundary 

pollution control treaties. New treaties could require some nations to make greater (or 

smaller) cuts in emissions, but by taking into account differences among the nations, larger 

total reductions and greater compliance might result. 
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CHAPTER 1. INTRODUCTION 

Damage to the global environment is one of the most serious problems facing the 

world today; it is also one of the most difficult to solve. The land, sea, and air 

surrounding the planet is, in many ways, a global commons—a shared heritage of all 

humans. The tragedy of the commons discussed by Hardin (1968) thus applies on a global 

scale: the actions of a single nation may have effects felt worldwide to the detriment of all. 

And since it is unlikely that a sovereign nation will take full account of the effects of its 

actions on other nations, global externalities will often result. Furthermore, the global 

commons provides global public goods, such as the ozone layer, oxygen, fresh water, an 

hospitable atmosphere, and a storehouse of genetic knowledge. Olson (1965) showed that 

when collective action is needed to provide a collective good, the members of the group 

(i.e. the nations of the world) may fail to provide that good because the optimal behavior 

of a nation may not be the same as optimal behavior for the group. It is quite likely 

therefore, that there will be an underprovision of global public goods (such as preservation 

of biological diversity) and an overprovision of public bads (such as chlorofluorocarbons 

(CFCs), sulfur dioxide (SO2), nitrogen oxides (NO*), and carbon dioxide (CO2)). 

Recognition of global commons problems led to several early global treaties such 

as the Nuclear Test-Ban Treaty in 1963, The 1972 Convention on the Prevention of 

Marine Pollution, and the 1973 Convention on International Trade in Endangered Species 
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of Wild Flora. The number of global treaties signed and ratified has grown as new 

problems have been recognized (see Table 1.1).' 

In recent years, there has been tremendous interest shown in the study of a host of 

transnational collective action problems including acid rain, global warming, 

desertification, deforestation, and stratospheric ozone depletion (see, e.g., Barrett, 1993; 

Eyckmans, Proost, and Schokkaert, 1993; Helm, 1991; Herber, 1991; Runge, 1990, 1993; 

Sandler and Sargent, 1995; and Murdoch and Sandler, 1997b). This dissertation focuses 

on collective action problems concerning acid rain and surface-level ozone, stemming fi-om 

the emissions of sulfur dioxide (SO2 ) and nitrogen oxides (NO*). European concern over 

these and other pollutants resulted in the formulation of the 1979 Convention on Long-

Range Transboundary Air Pollution (LRTAP) and its later ratification on 16 March 1983.^ 

Likewise, world-wide concern over stratospheric ozone depletion led to the Convention 

for the Protection of the Ozone Layer, negotiated in Vienna in 1985. This convention 

paved the way for protocols that reduced and will, in the fiiture, eliminate the production 

ofCFCs. 

The LRTAP Treaty 

Covering 31 nations, LRTAP established a fi-amework for future multi-national 

treaties. Currently, protocols to this treaty now cover sulfur emissions, nitrogen oxide 

' A coimtiy is most likely to sign a treaty when the chief executive approves. Treaty ratification occurs 
only at the legislative level after the signing. Thus ratification is more legally binding on a country. 

 ̂See UN Environment Programme (1991) for treaty and protocol text. 
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Table 1.1. Selected Major International Environmental Treaties 

number of number of 
Treaty date signatories ratifiers total 

Antarctic Treaty (a) 1959 0 39 39 
Nuclear Test Ban (b) 1963 11 109 120 
Wetlands (c) 1971 1 83 84 
Biological and Toxin Weapons (d) 1972 18 104 122 
World Heritage (e) 1972 2 118 120 
Ocean Dumping (f) 1972 14 59 73 
Endangered Species (CUES) (g) 1973 5 .106 111 
Ship Pollution (MARPOL) (h) 1978 0 65 65 
Migratory Species (i) 1979 10 37 47 
Transbound  ̂Air Pollution (j) 1979 0 38 38 
Antarctic Living Marine Resources (k) 1980 0 27 27 
Law of the Sea 0) 1982 86 40 126 
Ozone Layer (m) 1985 1 102 103 
Nuclear Accident Notification (n) 1986 24 56 80 
Nuclear Accident Assistance (o) 1986 26 56 82 
CFC Control (p) 1987 2 94 96 
Hazardous Waste Movement (q) 1989 24 34 58 
Biodiversity (r) 1992 120 23 143 
Climate C^ge (s) 1993 113 27 140 

Source: World Resources Institute (1992, Table 25.1 and Table 25.2); World Resources Institute (1994, 
Table 24.1 and Table 24.2); United Nations (1993, Table 6) 

(a) The Antarctic Treaty (Washington, D.C., 1959). 
(b) The Treaty Banning Nuclear Weapons Tests in the Atmosphere, in Outer Space, and Under Water 

(Moscow, 1963). 
(c) The Convention on Wetlands of International Importance Especially as Waterfowl Habitat (Ramsar, 

Iran; 1971). 
(d) The Convention on the Prohibition of the Development, Production, and Stockpiling of Bacteriological 

(Biological) and Toxin Weapons, and on their Destruction (London, Moscow, Washington, D.C., 
1972). 

(e) The Convention Concerning the Protection of the World Cultural and Natural Heritage (Paris, 1972). 
(f) The Convention on the Prevention of Marine Pollution by Dumping of Wastes and Other Matter 

(London, Mexico City, Moscow, Washington, D.C.; 1972). 
(g) The Convention on International Trade in Endangered Species of Wild Fauna and Flora (CITES) 

(Washington, D.C.; 1973). 
(h) The Protocol of 1978 Relating to the International Convention for the Prevention of PoUutioti from 

Ships, 1973 (London, 1978). 
(i) The Convention on the Conservation of Migratory Species of Wild Animals (Bonn, 1979). 
(j) The 1979 Convention on Long-Range Transboundary Air Pollution (LRTAP). 
(Tc) The Convention on the Conservation of Antarctic Marine Living Resources (Canberra, 1980). 
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Table 1.1. (continued) 

(m) The Vienna Convention for the Protection of the Ozone Layer (\^enna, 1985). 
(n) The Convention on Early Notification of a Nuclear Accident (Vienna, 1986). 
(0) The Convention on Assistance in the Case of a Nuclear Accident or Radiological Emergency (Vienna, 

1986). 
(p) The Protocol on Substances that Deplete the Ozone Layer (Montreal, 1987). 
(q) The Basel Convention on the Control of Transboundaiy Movements of Hazardous Wastes and their 

Disposal (Basel, 1989). 
(r) The Convention on Climate Change (New York, 1993). 
(s) The Convention on Biological Diversity (Nairobi, Kenya; 1992). 

emissions, and volatile organic compounds (see Table 1.2 for the treaty and protocols 

relevant to the study of sulfur and nitrogen oxide emissions). The LRTAP Convention 

was adopted on 13 November 1979 at a high-level meeting of the UN Economic 

Commission for Europe on the Protection of the Environment. Signatories included 

Austria, Belgium, Bulgaria, Canada, Czechoslovakia, Dermiark, Finland, France, East 

(jermany, West Germany, Greece, Hungary, Iceland, Ireland, Italy, Liechtenstein, 

Luxembourg, Netherlands, Norway, Poland, Portugal, Romania, Soviet Union, Spain, 

Sweden, Switzerland, Turkey, the UK, the US, and Yugoslavia (UNEP, 1991). The 

signatories of LRTAP agreed that further study was needed prior to specific limits of 

emission reductions being mandated. On 8 July 1985, the Helsinki Protocol to the 

LRTAP Convention was adopted and committed ratifiers to reduce sulfur emissions by at 

least 30 percent, based on 1980 levels, as soon as possible or by 1993. The protocol 

entered into force on 2 September 1987. 
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Table 1.2. The 1979 LRTAP Convention and its Related Protocols 

Country Convention (a) EMEP Protocol (b) Sulfur Protocol (c) NOx Protocol (d) 

Albania 
Austria 1982 R 1987 Ac 1987 R 1990 R 
Belarus 1980 R 1985 At 1986 At 1989 At 
Belgium 1982 R 1987 R 1989 R 1988 S 
Bosnia and 1993 R 1993 Sc 
Herzegovina 
Bulgaria 1981 R 1986 Ap 1986 Ap 1989 R 
Canada 1981 R 1985 R 1985 R 1991 R 
Croatia 1992 Sc 1992 Sc 
Cyprus 1991 Ac 1991 Ac 
Czechoslavakia 1983 R 1986 Ac 1986 Ap 1990 Ap 
Czech Republic 1993 Sc 1993 Sc 1993 Sc 1993 Sc 
Derunark 1982 R 1986 R 1986 R 1993 At 
Finland 1981 R 1986 R 1986 R 1990 R 
France 1981 Ap 1987 R 1986 Ap 1989 Ap 
Germany 1982 R 1986 R 1987 R 1990 R 
Germany, East 1986 Ac 1985 S 
Greece 1983 R 1988 Ac 
Hungary 1980 R 1985 Ap 1986 R 1991 Ap 
Iceland 1983 R 
Ireland 1982 R 1987 R 
Italy 1982 R 1989 R 1990 R 1992 R 
Liechtenstein 1983 R 1985 Ac 1986 R 1994 R 
Luxembourg 1982 R 1987 R 1987 R 1990 R 
Netherlands 1982 At 1985 At 1986 At 1989 At 
Norway 1981 R 1985 At 1986 R 1989 R 
Poland 1985 R 1988 Ac 
Portugal 1980 R 1989 Ac 
Romania 1991 R 
Russian Federation 1980 R 1985 At 1986 R 1989 At 
Slovakia 1993 Sc 1993 Sc 1993 Sc 1993 Sc 
Slovenia 1992 Sc 1992 Sc 
Spain 1982 R 1987 Ac 1990 R 
Sweden 1981 R 1985 R 1986 R 1990 R 
Switzerland 1983 R 1985 R 1987 R 1990 R 
Turkey 1983 R 1985 R 
Ukraine 1980 R 1985 At 1986 At 1989 At 
United Kingdom 1982 R 1985 R 1990 R 
United States 1981 At 1984 At 1989 At 
Yugoslavia 1987 R 1987 Ac 

Source: United Nations (1993, Table 6); United Nations (1994, private correspondence with the Treaty 
Section). 
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Table 1.2. (continued) 

(a) Convention on Long-range Transboundaiy Air Pollution, adopted 13.1L1979, entered into force 
16.3.1983. 

(b) Protocol to the 1979 Convention on Long-range Transboundary Air Pollution on Long-term Financing 
of the Cooperative Programme for Monitoring and Evaluation of the Long-range Transmission of Air 
Pollutants in Europe (EMEP), adopted 28.9.1984, entered into force 28.1.1988. 

(c) Protocol to the 1979 Convention on Long-range Transboundary Air Pollution on the Reduction of 
Sulfur Emissions or their Transboundaiy Fluxes by at least 30 percent, adopted 8.7.1985, entered into 
force 2.9.1987 

(d) Protocol to the 1979 Convention on Long-range Transboundaiy Air Pollution concerning the Control 
of Emissions of Nitrogen Oxides or their Transboundaiy Fluxes, adopted 31.10.1988, entered into 
force 14.2.1991. 

(e) Protocol to the 1979 Convention on Long-range Transboundaiy Air Pollution concerning the Control 
of Emissions of Volatile Organic Compounds or their Transboundaiy Fluxes, adopted 18. II. 1991. 

R = Ratified; Ac = Acceded; Ap = Approved; At = Accepted; Sc = Succeeded; S = Signed. 

In the case of NO* emissions, protocols have been much slower. On 31 October 

1988, the Sofia Protocol was signed, requiring reductions in NO* to return to 1987 levels 

by 31 December 1994 (UNEP, 1991). This protocol did not enter into force until 14 

February 1991. 

The protocols to the LRTAP convention were designed to reduce or stabilize 

emissions of sulfiir and NOx. These emissions combine in the atmosphere with water 

vapor and tropospheric ozone, producing sulfuric and nitric acid. These acids can later fall 

with the rain and degrade lakes, rivers, coastal waters, forests, and manmade structures. 

This degradation can also stem fi^om dry depositions of sulfur and NO* that lead to 

increased acidity of soils and water sheds. In 1980, sources of sulfur emissions in 

percentage terms were; 47.8 from power plants; 37.4, industry; 10, residential and 

commercial; 3.7, mobile (e.g., cars and trucks); and 1, miscellaneous (OECD, 1990). In 
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1980, sources of NO* emissions in percentage terms were: 53.6 from mobile polluters; 

23.5, power plants; 15.4, industry; 6.1, residential and commercial; and 1.3, miscellaneous. 

These difiFerences in sources figure prominently in the interpretation of the empirical 

results in later chapters (see Figure 1.1). 

In addition to acid rain, sulfur and NOx emissions lead to reductions in ambient air 

quality that may cause serious human health impairments to susceptible populations — 

particularly the young and old. NO* and volatile organic compounds (VOCs) are the 

primary precursors to tropospheric ozone in European cities (OECD, 1990). Ambient 

levels of particulate matter (PM), which are potentially more damaging than tropospheric 

ozone, are also influenced by sulfur and NO* emissions. Approximately 10 percent of 

emitted SO2 is converted to airborne sulfate aerosol (Latimer, Iyer, and Malm, 1990), and 

up to 20 percent of the total PM mass is attributable to sulfates (Sisler et al., 1993). 

Similarly, some fraction of NO* is converted to nitrates which comprise up to 5 percent of 

PM mass. Given that recent epidemiology studies have found a consistent association 

between premature death and PM (e.g., Schwartz, 1991), ambient and deposition aspects 

of these pollutants cause harm. 

A variety of strategies are available for the control of sulfur and NO* emissions. 

Both emissions can be limited through improved eflBciency, especially in the case of 

residential and commercial uses, and increased conservation. Sulfur can also be controlled 

through the use of low-sulfur coal and oil as well as flue-gas desulfiirization for power 

plants. In the case of NO*, emissions can be reduced in power plants through the 
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Figure 1.1. Sources of Emissions 
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use of a fluidized bed combustion process. Pollution from mobile sources can be curtailed 

with catalytic converters and turbocharging of engines. 

Both sulfur and NOx emissions pose a transnational pollution concern, because 

once released into the atmosphere these pollutants can remam aloft for days and travel 

from their emission source to be deposited on the territory of a downwind country. Sulfur 

emissions can remain in the atmosphere for .01 days to 7 days, while NO* can remain aloft 

from 2 to 8 days (Alcamo and Runca, 1986, p. 3). Therefore, on average, sulfur 

pollutants travel shorter distances than NO* pollutants and land nearer to home.^ 

To account for the transport of sulfur and NO* among European countries, I rely 

on the transport matrix devised from EMEP measurements (Eliassen and Saltbones, 1983) 

and reported for various years in Sandnes (1993) and Tuovinen et al. (1994). For 

example, a sulflir matrix's entries indicate the amount of sulfur deposited in country i (row 

country) emitted by country j (column country). By dividing each entry by the emitter's 

total sulfur emissions and then muhiplying by the fraction of the country's emissions that 

remains in the study area, a transport matrix results. Each entry of the transport matrix 

indicates the fraction of country j's emissions deposited on country i—denoted by ajj. The 

diagonal entries of the matrix indicate the fraction of country i's emissions dumped on 

itself Bigger nations typically have larger diagonal elements than smaller countries, so 

that they absorb more of their own sulfur and NOx pollutants. A similar matrix can be 

formulated for NO*. Although emission entries can differ in the untransformed matrix by 

 ̂ A longer unpublished version of this paper contains tables on the raw data and the transferability of the 
pollutants. See Murdoch, Sandler and Sargent (1994, Tables 1A-4A), which is available upon request. 
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year, the transport matrix, when expressed in percentage terms, varies imperceptibly from 

year to year; hence, a single transport matrix can be applied to the subperiods of this 

study. The transport matrix for 1985 by Sandnes (1993) is used in chapter 4, while the 

empirical model in chapter 5 uses an averaged 1985-93 transport matrix by Tuovinen et al. 

(1994). 

A decrease in ambient air quality is related to depositions, since PM is proportional 

to emissions, and ambient impacts are experienced as pollutants are transported to their 

sites of deposition. I must rely on EMEP's deposition transport matrix to represent 

ambient transportation, inasmuch as data is not directly available for this transport for the 

sample period or countries. Surely, ambient air quality is reduced in and around 

deposition sites. I should, however, point out that the concern over ambient aspects of 

sulfur emissions is a recent phenomenon and did not characterize the period under study. 

Nevertheless, I attempt to include its effects on the demand for emission cutbacks. 

The Problem 

While the protocols covering sulfur, nitrogen oxides, and CFCs are similar in that 

they legally bind nations to limit or reduce transboundary air pollutants, the differences 

between the requirements are striking. Specifically, the update to the 1987 CFCs (or 

Montreal) Protocol required a 50% cutback in the production and consumption of CFCs 

by 1998 based on 1986 levels. This was strengthened three years later so that the same 

level of reductions had to be completed by 1995. An outright ban on the production of 

CFCs will go into effect on 1 January 2000. These requirements can be contrasted with 
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those of the Sulfur (or Helsinki) Protocol which mandated nations by 1993 to reduce their 

sulfiir emissions by 30% based on 1980 levels, and the Nitrogen (or Sofia) Protocol which 

required nations to limit their nitrogen emissions by 1995 to the emission levels of 1987. 

Why is it that nations have committed to making dramatic reductions in CFCs, 

moderate reductions in sulfur emissions, and so little reduction in nitrogen emissions? 

This dissertation will examine how the technology of public supply plays an important part 

in determining the nature of the cutbacks. For example, while the ozone shield is a pure 

public good, with most nations affected equally by its loss, acid rain (caused by sulfur and 

nitrogen emissions) has more localized eflfects. Through chemical reactions occurring in 

the atmosphere, these two pollutants are the main contributors to acid rain, an impure 

public bad. Nations closest to the largest emissions are subject to the highest levels of 

pollutant and often suffer the greatest damage from acid rain. Thus the technology of 

public supply for pollutants that cause acid rain is very different from the technology of 

public supply for the pollutants that cause the thinning of the ozone layer. As I will show, 

this difference appears to have influenced the requirements contained in the treaties that 

govern these pollutants. 

But an additional question beyond differences in emission cutbacks presents itself; 

have nations by cooperating together made cutbacks that go beyond what they would have 

achieved if th^ had acted separately? In other words, have the nations truly cooperated 

to achieve lower levels of emissions, or have they simply signed treaties that confirmed 

reductions that were already made or that they had planned to make? This dissertation 
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will show how group size, heterogeneous payoffs, and transactions costs are crucial in 

determining the actions of nations, and how close these actions are to an optimal solution. 

Nations are more likely to cooperate when the number of ratifiers is small, when 

transactions costs are low, when certainty is high, and when there are large private 

benefits relative to public benefits. 

Since each of the protocols under discussion mandates all nations to make identical 

percentage cuts in their emissions, it is unlikely that all nations acting alone would have 

made the same level of reductions^. But it is also unlikely that the cooperative solution 

would have resulted in identical percentage cutbacks. In fact the recently signed Oslo 

Protocol makes it clear that equal percentage reductions are not an optimal solution to 

controlling acid rain. Instead this treaty emphasizes the need to stay below critical levels— 

the level at which damage begins to occur to a nation's ecosystem fi"om a pollutant. This 

critical level varies among nations. Likewise, it is recognized that nations have differing 

pollution control costs and that negotiation and side payments may be needed for an 

optimal least-cost solution. An optimal solution for controlling transboundary pollutants 

will, therefore, require international coordination. But the differing costs of emission 

reductions, and differing levels of damage fi^om pollutants among countries means that the 

true cooperative solution (taking full account of the costs and benefits) will require some 

nations to make larger reductions than others. 

 ̂Side payments, such as those used in the Montreal Protocol, to countries with higher control costs can be 
an efficient mechanism to achieve similar reductions among countries. 
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Because the theoretical and empirical focus of this dissertation is on what factors 

determine a nation's contribution to impure public goods, there is also a need to find out 

how close nations are to achieving a cooperative solution. One way to help answer these 

questions empirically is to use a numerical method that can represent both the technology 

of public supply of a good and the amount of public and private benefits that result from a 

nation contributing to that public good. A spatial weight matrix performs this task very 

well. The numbers inside the matrix are determined by the "spillovers" of a public good 

from one region into another (the spillovers, can either be represented in absolute terms or 

percentages). The two-dimensional matrix consists of the contributing regions on one axis 

and the receiving regions on the other axis (for simplicity, the matrix uses the same regions 

on both axes). 

Such a matrix is quite useful in examining global (and even local) public goods. A 

pure public bad, like CFCs, which affects all nations equally, would result in a spatial 

matrix of all ones (i.e. 100 percent) since the damage done by the public bad affects 

everyone equally.' On the other hand, a matrix for an impure public bad, such as sulfur, 

would be a nonsymmetric matrix with the values of the elements determined by total 

emissions, the amount of time the pollutant stays airborne, the location of the sources of 

emissions, and wind direction among the regions.® 

 ̂ In contrast, a private good would have a spatial weight matrix (in percentage terms) with ones along the 
diagonal and all the non-diagonal elements equal to zero, since only the contributing nations receive 
benefits from the good. 
® If the matrix is expressed in percentage terms, it would still be nonsymmetric and the values of the 
elements would range between zero and positive one. 
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The spatial weight matrix can be separated into two different matrices. One 

diagonal matrix, A, composed of only the diagonal elements of the weight matrix, with 

zeros on the off diagonal, indicates the percentage (or amount) of a nation's emissions that 

falls on itself Another matrix. A, with zeros along the diagonal, but all other elements 

identical to the elements in the weight matrix, indicates the distribution of one nation's 

emissions falling on all other nations. If the A matrix is added to the A matrix, the result is 

the original matrix. 

The field of spatial statistics provides a method, spatial autoregression, that uses 

the spatial weight matrix as an independent variable in a regression yielding consistent and 

unbiased estimates for all the independent variables. The resulting coefiScient and standard 

error for the spatial weight matrix indicate the importance of public supply technology and 

how the distribution of benefits influences contributions to the public good. 

If the emission reductions of a coimtry are positively influenced by the amoimt of 

the country's emissions deposited on itself Md on its neighbors, ceteris paribus, then it is 

behaving cooperatively. If however, a country reduces its emissions only to reduce the 

damage its emissions cause to itself then it is not behaving cooperatively. For example, 

the results of a spatial regression examining the behavior of an altruistic nation would 

show positive coefficients for both the A and A matrices since that nation is concerned 

about the health of its citizens and its forests, but also the health of citizens and forests of 

other nations. A purely selfish nation would have a zero or negative coefficient for the A 

matrix, since that nation is either not concerned with the amount of its pollution that falls 
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on its neighbors (indicated by a zero coefiBcient), or it decreases its emission reductions if 

it sees that less pollution from others is landing on its own soil (indicated by a negative 

coefficient). 

Outline of the Dissertation 

The body of the dissertation consists of six chapters. Chapter 1 consists of an 

introduction to the dissertation and background information on the problem of air 

pollution in Europe. In chapter 2, the existing literature on the provision of public goods 

is reviewed. The review begins with pure public goods models and is extended to the joint 

products model. This is followed by an examination of the relationship between public 

goods and military alliances which share problems similar to those encountered by 

countries negotiating transboundary treaties. The final part of chapter 2 examines existing 

literature on international environmental agreements. 

Chapter 3 focuses on the formation of treaties to manage transnational commons 

when efforts must be coordinated among a minimal-sized group so as to make cooperation 

worthwhile. Since the intentions of the others in the group are uncertain, the focus is on 

the use of mixed-strategy equilibria. The number of required participants, the pattern of 

payoffs, transaction costs, and the underlying technology of public supply aggregation are 

key factors behind the achievement of coordination. The last part of the chapter analyzes 

the reasons for the diflfering outcomes of negotiations on stratospheric ozone depletion, 

global warming, acid rain, and tropical deforestation. 
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In chapter 4, a subscription model of emission reductions is specified that accounts 

for voluntary and nonvoluntary behavior regarding the adherence to the Helsinki and Sofia 

Protocols. From this model, two reduced form demand equations for emission reductions 

are developed usmg spatial econometric techniques—one model for sulfiir and one model 

for nitrogen oxides—that account for the spatial dispersion of each type of pollutant. Data 

firom 25 European nations and covering the years 1980 to 1990 will be used in the models. 

The models for sulfijr reductions first examine changes in SO2 emission reductions during 

the pre-Helsinki period (1980 to 1985), which are strictly voluntary, and then examine 

voluntary SO2 emission reductions that occured after the Helsinki Protocol (but which use 

1980 as the base year to calculate emission reductions up to 1990). For nitrogen oxides, 

the models use voluntary emission reductions in the pre-Sofia period (1980 to 1987) and 

the post-Sofia period (1988 to 1990). 

In the sulfur model, the first time period describes a country's voluntary behavior 

before the treaty was signed, while the second describes the post-treaty non-voluntary 

behavior. For the nitrogen oxide model the treaty had not taken effect (i.e. been ratified) 

but it is reasonable to test for a difference in emissions between the two time periods 

mentioned because of the signing of the treaty in 1987. 

Comparing the results between the two periods will give information on whether a 

treaty had a significant effect on a nation's level of pollutant emissions. If treaties simply 

codified emission reductions that countries had planned to make, based on their own self-

interest, then pre- and post-treaty behavior should not significantly differ fi-om each other. 
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In such a case, treaties were not designed to achieve a cooperative solution to 

transboundary air pollution, but rather to score political or public relations points at the 

domestic and/or international level. 

By comparing the regression results between the two models, the influence of 

public supply technology (that is, the degree of publicness of a transboundary pollutant) 

on pre- and post-treaty behavior will be shown. Since sulfur and nitrogen emissions have 

different degrees of publicness, some differences between the two models should occur. 

In addition, countries are expected to depart further from the cooperative solution in both 

pre- and post-treaty periods because nitrogen oxides have longer atmospheric residence 

times than sulfur (that is, it is easier to send your nitrogen emissions over to your distant 

neighbor). 

The model performs well for SO2 cutbacks. Less satisfying results are obtained for 

NOx, because the model's assumption of a unitary actor at the national level is less 

descriptive. A number of collective action considerations are identified that mdicate that 

sulfur emissions are easier to control than those of NO*. 

Chapter 5 examines the behavior of the 25 European nations using a more 

advanced econometric model than the model used in chapter 4. This model, a spatially-

lagged Seemingly Unrelated Regression (SUR) model, allows a year-by-year comparison 

of the determinants of SO2 and NO* emission reduction from 1980 to 1990. The Nash-

subscription model again serves as the theoretical model for deriving each year's reduced 

form demand equations for voluntary emission reductions. 
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Comparing the results of the "snapshot" models of chapter 4 to the "continuous" 

models of chapter 5, allows a more detailed analysis and gives some idea of how robust 

the models are. In addition, the extra degrees of freedom provided by the continuous 

model allows one to examine more variables and track their eflfects over time. In both the 

sulfur and NO* models, there is evidence that the influence of certain variables changes 

over time. Some variables that were significant in the snapshot model, turn out to be 

significant in some years but not in others in the continuous model. There are several 

possible explanations for these changes including "noisy" variables, increasing scientific 

knowledge, and shifts in political ideology. 

Overall, the subscription model for sulfiir reductions works as well for the yearly 

cases as it did for the snapshot cases. The results also appear robust since most variables 

are significant and of the predicted sign in the pre- and post-treaty years for voluntary 

sulfur emission reductions. Again, however, the results of the NO* models are less 

satisfactory. But, as in the snapshot models, the yearly models indicate that nations 

continue to free-ride oflf the reductions of others' sulfur and NO* emissions. 

In the concluding chapter, I summarize the main findings of my dissertation, 

review the importance of these results and their relationship to the theory of public goods 

models, and examine how these findings can be used to improve future transboundary 

pollution control treaties. Fmally, I identify the future areas of research that this 

dissertation points toward. 
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CHAPTER 2. LITERATURE REVIEW 

Introduction 

Transboimdary air pollution is an externality with the characteristics of either a 

pure or impure public bad. Samuelson (1954, 1955) formalized the ideas of earlier 

authors (such as Lindahl and Wicksell) on the optimal provision of pure public goods by 

deriving the first-order conditions for a Pareto optimum. However, economic literature 

on achieving eflBcient amounts of externalities began with Pigou (1946) who discussed 

how taxes and subsidies, if properly allocated, could internalize an externality and thereby 

achieve Pareto optimality. 

Samuelson dealt with the simplest type of externality, that of a pure public good. 

This type of good has benefits that are both nonexcludable and nonrival; in other words, 

one cannot prevent others fi-om deriving benefits fi-om the good once provided, nor can an 

individual who partakes of the benefits of a public good diminish the quantity of the public 

good available to others. 

Transboundary air pollution is certainly nonexcludable—once in the air, no nation 

can erect a barrier to exclude itself fi-om the effects of the pollution. However, only some 

types of air pollution have effects that are nonrival. For example CO2, which influences 

earth's temperature, and CFCs, which have been shown to cause depletion of the ozone 

layer, are nonrival public bads. That is, each unit of the pollutant causes atmospheric 

effects that will eventually be felt around the world. Furthermore, the effects on a 
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particular nation are independent of the number of units that nation contributed. Instead, 

national damage is determined by total world emissions. 

On the other hand, sulfur dioxide (SO2) and nitrogen oxides (NO*) are impure 

public bads. Although they possess the property of nonexcludability, they are only 

partially nonrival. Each unit of pollution that lands on one nation, is one less unit that will 

land on another nation, but the amount of acid rain that falls on a country is determined by 

that country and its neighbors. It is possible to model these types of pollutants within the 

framework of a joint product model—an externality that has both private (country-specific) 

effects and public (world-wide) effects (Sandler, 1992). Country-specific effects include 

reduced damage to buildings and works of art, increased fish catches in rivers and lakes, 

and fewer health problems in cities. Public good aspects, confined mostly to the 

continents, would include greater biodiversity in forests, watershed protection, and greater 

recreation opportunities. 

The pure public good subscription model is the most common model used in 

studying the allocation of public goods. In this model, each agent seeks to maximize his 

or her utility subject to a budget constraint. Utility is a fijnction of the consumption of a 

private good and the total amount of public good provided. Agents purchase the private 

good and choose the amount they wish to contribute to the public good. 

In the most common scenario, agents assume that their contribution to a public 

good has no effect on the amount of the public good provided by other agents. The 

resulting equilibrium is referred to as the Nash, noncooperative, zero-conjecture, or 
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subscription equilibrium. The Nash equilibrium will, in most cases, fall short of the Pareto 

optimal level.' This is not surprising since each agent ignores the effects of their own 

contribution on others' utility. For many types of utility functions (the Cobb-Douglas and 

quasi-linear among others), if tastes and endowments are the same for all agents, the 

shortfall between the Nash equilibrium and the Pareto optimum will increase as group size 

increases (Comes and Sandler; 1996, 161-163). This result corresponds to Olson's (1965) 

hypothesis that free-riding increases with group size. 

The simple pure public good model may be extended in two ways: first, by 

incorporating non-zero conjectures into the agent's reaction fimction, or second, by taking 

account of public goods that generate multiple outputs. Comes and Sandler (1984b) 

developed a fiinctional form that allowed different conjectural variations to be investigated 

by varying a single parameter. Depending on this parameter, the equilibrium solution may 

converge to Nash as group size increases or may become Pareto. Comes and Sandler find 

that the "Olson conjecture" holds in many cases. These solutions assume that the agents 

are identical in terms of tastes and endowments. When agents are not identical, it is 

impossible to say a priori how far the non-Nash equilibrium departs from the Pareto 

solution. Such a situation would occur if some agents regard the public good as a bad. 

For example, a pacifist would likely regard defense spending as a public bad. 

In the second extension of a pure good model, one recognizes that a good or 

activity may generate multiple outputs and these outputs may be private, purely public, or 

' This assumes that all agents regard the public good as having a positive marginal utility. 
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impurely public and a joint product (or impure public good) model is appropriate. In 

fact the joint product model is an extension of the pure public good model that allows for 

multiple public goods. Any type of externality problem can be represented by this model 

(Comes and Sandler, 1984a). In the case of multijurisdictional spillovers, which occur in 

both defense spending among allies and transboundary air pollution, each jurisdiction 

chooses to supply a quantity of the public good based upon the amount of spillover from 

other jurisdictions. The response to the spillover, that is the stability of the production 

reaction path, will depend upon both the income elasticity and the degree of 

complementarity/substitutabUity of the joint products (Sandler and Culyer, 1982). In 

contrast, when there are no joint products, the stability and slope of the reaction path are 

determined only by the income elasticities of the private and public goods. In fact, a joint 

product model that deals with normal goods will generate reaction curves that are 

positively sloped if the substitution effect is in the same direction as the income effect. In 

other words, an increase in the total amount of the public good will cause a player to 

increase their own public good contribution. This is not possible in a pure public good 

model with only two goods (Comes and Sandler, 1994). 

Another important difference between the pure public good model and the joint 

product model occurs when examining the Neutrality theorem or Invariance property 

discussed by Warr (1983). In a pure public good model, under certain conditions, it is 

impossible to provide more of the public good by taxation or by redistributing income 

among a group of contributors, assuming the group of contributors remains unchanged 
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(Bergstrom, Blume, and Varian; 1986). But this result does not necessarily hold for joint 

product models (Comes and Sandler, 1984a; 1985; Sandler and Posnett, 1991). 

Therefore, tax and redistributive properties may have important effects on the provision of 

impure public goods. 

Public Goods and Military Alliances 

The subject of defense expenditures among allies has been one of the most 

productive areas for studying the provision of international public goods. Like 

transboundary air pollution, defense spending has both private aspects (e.g., maintenance 

of domestic order, disaster relief) and public aspects (e.g., deterrence). A public good 

supplied by one nation will result in "spillovers" or "spillins" that will benefit other 

members in the collective, to varying degrees. For example, if a large nation and a small 

nation are allies, then the larger nation's army will deter other countries fi-om attacking its 

smaller ally; therefore, the smaller nation can spend less on its military forces and still have 

a higher level of security, compared to a nonallied situation. Likewise, in the case of 

transboundary air pollution, when a nation reduces its own emissions, the nations 

bordering that nation gain some of the benefits (spillovers) fi'om cleaner air and may be 

less likely to reduce their own emissions. 

Empirical work on the provision of public goods got a strong impetus fi-om Olson's 

ground breaking study on collective action problems in 1965. In his book, Olson put 

forward many ideas about the causes and consequences of coUective failure (summarized 

by Sandler, 1992). First, the larger the membership of the group, the greater will be the 
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members of a group (i.e. those with fewer resources) will have a tendency to exploit or 

"free-ride" on the contributions of the larger members. Third, selective incentives and 

institutional design may reduce collective failures. 

Olson and Zeckhauser (1966) were the first to formally study alliance behavior 

using a public goods model. They were interested in testing Olson's hypothesis of free-

riding in a group. Using NATO alliance members, they assimied that each country 

maximized its utility by consuming a private and a public good subject to a national budget 

constraint. Olson and Zeckhauser conceived NATO as sharing a pure public good-

nuclear deterrence. The benefits from a nation providing such a good spill over to other 

members of the alliance. Olson and Zeckhauser found that spillins will ofren cause an ally 

to cut its own defense spending and that the response to spillins depends only on income 

elasticity. Thus a nation's wealth determines its level of public good provision. One of the 

limitations of the Olson and Zeckhauser model was, however, that it only allowed two 

goods. When the model is extended to account for joint products, the results change. 

Sandler and Forbes' (1980) joint product model found that wealth was not the only 

determinant of defense expenditures, while Murdoch and Sandler (1982) showed that if 

defense goods are complements, allies may actually increase defense expenditures as other 

 ̂A Pareto optimal point is one where it is not possible to make someone better off without making 
another worse off. Social optimality does not necessarily imply Pareto optimality. In fact, there are many 
Pareto optima, but only one of these can be the social optimum. In order to identify this point, a social 
welfare fimction is needed. 
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nations increase tlieirs. Such behavior is not possible in a two good model because the 

goods are forced to act as substitutes (Hcks, 1946). 

But can emission reductions be compared with military deterrence? Are emission 

reductions complements or substitutes? The answer may depend on the shape of the 

damage function which tells how the environment is affected by different levels of 

pollution. With a linear damage function, it would be logical to expect emission 

reductions to behave as substitutes. Spillovers (of reduced emissions) from one nation, 

allow other nations to increase their emissions and still achieve the same level of 

envirormiental quality. On the hand, if there are other considerations (such as reputation) 

involved, then the result may not be clear-cut. It may be diflBcult for one nation to be seen 

as a "dirty" nation if all nations around are "green." If this is true, then something like 

leader-follower behavior may occur, as one nation, perhaps the largest, sets an example 

that others follow. 

A damage function may be discontinuous (i.e. there may be a threshold effect) or 

non-linear. The shape of the function may also determine the degree of complementarity-

substitutability depending on the level of pollution. Below the threshold, there will be no 

relationship between spillovers and a nation's own actions. Beyond a level of maximum 

damage there may again be no relationship or a positive one, since any pollution control 

will reduce GNP with only a marginal change in environmental quality. The damage 

function will thus create a problem for estimating whether emission reductions behave as 

complements or substitutes. 
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Returning to empirical studies, I note that it is also possible to model collective 

action questions with something other than the oligarchy choice models used by Olson and 

Zeckhauser. Using public choice theory to explain variations in the share of GNP devoted 

to military expenditures, Dudley and Montmarquette (1981) developed a new type of 

model. Using a Stone-Geary utility fimction^ subject to the budget constraint of a median 

voter, they were able to estimate a demand function for per capita defense spending. 

Using full uiformation maxunum likelihood (ITML), to deal with non-linearities and 

simultaneity problems, the model was applied to 38 developed and developing countries 

separately for the years 1960, 1970 and 1975. Spillover effects were found to be 

significant and positive. Income elasticity and the tax price elasticity of demand were 

found to be significant. They could not reject Olson and Zeckhausers hypothesis of fi-ee-

riding behavior among the smaller nations. 

I have discussed two types of models used to examine collective action issues, 

oligarchy choice and median voter models. Murdoch, Sandler, and Hansen (1991) 

developed a nested test procedure that could distinguish between the two types of models. 

In a sample of ten countries in the NATO alliance between 1965 and 1988 they foimd 

some allies followed the median voter model while others followed the oligarchy choice 

model and others followed neither. 

 ̂The Stone-Geaiy utility function is simply a Cobb-Douglas function with its origin displaced. Thus it 
shares all the properties of the Cobb-Douglas fimctioii, includiog homotheticity. In addition it allows log-
linear transformations to be represented as linear expenditure fimctions and forces budget shares to equal 
one when income changes. 
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Closely related to this idea, is the possibility that a nation's decision to contribute 

to a public good, particularly an environmental good such as emission reduction, will be 

influenced by the nation's political institution. Congleton (1992) shows that an 

authoritarian regime experiences a higher relative price for pollution control than a more 

democratic one (i.e. the median voter model). Since the leader consumes a larger national 

income share and has a shorter time horizon than his democratic counterparts, this causes 

him to desire a lower level of environmental quality because pursuing environmental 

quality takes time and may lower national output. 

Olson (1993) also examines how the style of government affects public good 

provision. He hypothesizes that the tax rate will be higher and the level of public good 

provision will be lower in an autocracy than in a democracy. An autocracy will levy taxes 

at their revenue-maximizing level. This tax level is higher than the optimal tax rate which 

maximizes national output (assuming that all taxes collected in a democracy are used to 

purchase public goods which increase national output). In addition, the autocrat will 

spend money to provide a public good only up to the point where a dollar spent on the 

public good will yield a dollar increase in the autocrat's share of national output. Since the 

autocrat is only concerned with his share of national output rather than the level of output 

itself, the level of public good provision will be lower under the autocrat. Finally, Olson 

explains that since an autocrat has a shorter time horizon than a democracy, he will be less 

interested in policies that increase prosperity in the long run. His goal is to maximize his 

share of national output during his, probably brief, rule. This reinforces the above 
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conclusions that taxes will be higher, and money spent on public goods lower, than they 

would be under a democracy. 

It is also possible to investigate what type of cooperative strategy a nation follows 

in providing a public good. Sandler and Murdoch (1990) derived two alternative models 

that would distinguish between Nash and Lindahl behavior. Their results showed that in 

five of the ten NATO alliance members, the Nash specification fit the data best, while in 

no case did they find any evidence of Lindahl behavior. 

While treaties forming military alliances have a long history (NATO itself is almost 

half a century old and for forty years has prevented a major European war), transboundary 

air pollution control treaties are of a more recent vintage. The relatively large number of 

nations (32) that have signed the LRTAP convention (about twice the size of the NATO 

alliance) raises questions about the effectiveness of transboundary air pollution control 

treaties. Since there is no international enforcement mechanism, it may be unlikely that 

any substantial gains would be made in pollution reductions beyond what nations would 

have done in the absence of the treaty. Barrett (1991) states that when the number of 

nations involved in international environmental agreements is large, very little can be 

achieved because an additional nation defecting or signing will have little effect on the 

decisions of others. Therefore, Barrett is skeptical that any dramatic gains were made by 

the Montreal Protocol, "...so many countries would not have committed themselves to the 

agreement in the first place unless they already intended to take substantial unilateral 

action." (Barrett; 1991, 150). 
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Murdoch and Sandler's (1997b) work empirically examines Barrett's claim. They 

showed that the theoretical model of the voluntary provision of a pure public good could 

be applied to a transboundary air pollution problem. They found that CFCs emission 

reductions could be explained by (1) national income, (2) political rights, and (3) 

geographical latitude. Using both parametric and nonparametric tests they were able to 

show that the cutbacks codified in the Montreal Protocol were consistent with self-

interested (i.e. non-cooperative) behavior. This confirmed what Barrett (1992) had 

already suggested. In addition the model was able to distinguish between a pure public 

good (CFCs) and an impure public good with both private and public benefits (SO2 

emissions). 

Finally, one may distinguish between different public supply technologies. Recently 

Conybeare, Murdoch and Sandler (1994) developed a method to differentiate between 

different technologies of public supply in military alliances. The authors extended the joint 

product model to include best-shot and weakest-link technologies and contrasted them 

with a simple summation technology. Examining four different alliances, they found one 

alliance (Triple Alliance prior to WW I) that appeared to exhibit best-shot behavior, one 

alliance (Triple Entente prior to WW I) conforming to weakest-link, while two other 

alliances, NATO and Warsaw Pact, were inconclusive. 

In summation then, over the last thirty years a wealth of collective action models 

have arisen. The early pure public goods models were soon augmented by joint product 

models. The simple joint product models have been expanded to include cost differences 
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among agents (McGuire, 1990), leader-follower behavior (Bruce, 1990), and median-

voter theory (Dudley and Montmarquette, 1981; Murdoch, Sandler, and Hansen, 1991). 

A way to distinguish between cooperative and non-cooperative behavior was developed 

by McGuire and Groth (1985), and refined by Sandler and Murdoch (1990). And most 

recently, Conybeare, Murdoch, and Sandler (1994) developed a joint product model that 

can distinguish between difiFerent types of public supply. 

Public Goods and Environmental Treaties 

Although the literature on the public provision of environmental goods is not as 

extensive as that on the provision of military goods, there are some important works. One 

of the most important differences between a coalition of countries sharing military defense 

and an alliance of countries cooperating to reduce emissions of a pollutant, is the ability to 

punish defectors. Of course, the enforcement of an international treaty is not possible 

without some supranational organization that has been granted that right. However, in 

the case of a military alliance, the threat of being kicked out of the alliance is a greater 

deterrent for a potential defector than any type of threat that could be applied to the 

defector of an international environmental treaty. Specifically, a military alliance might be 

able to refuse to defend one of its members from attack, if that member were to repeatedly 

fail to meet its obligations to provide its share of the public good for the military alliance. 

Naturally the credibility of this punishment hinges on the amount of collateral damage that 

would result from an attack on its neighbor. 
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On the other hand, a nation that refuses to abide by a treaty limiting emissions of 

some pollutant, faces few sanctions from other members. To punish a member that 

defected from an emissions reduction treaty would involve increasing one's own emissions, 

thereby hurting oneself more than the defector, since one's own emissions are more 

harmful than that of a neighbor's. Alternatively, a group of nations might attempt to 

impose trade, financial, or diplomatic sanctions on a defector, but such sanctions are 

notoriously diflBcult to impose collectively. The only other possibility of punishing a 

defector from an environmental treaty would be refusing to defend that nation militarily. 

But for reasons akeady discussed, this is a credible threat only in a limited number of 

situations. 

The ideal international environment agreement (lEA) would, therefore, be one that 

is self-enforcing. Barrett (1994) modeled lEA's as infinitely repeated games. The "folk-

theorem" guarantees that such games can sustain full cooperation among any number of 

countries if the discount rate is not too small. Barrett examines how different marginal 

benefit and marginal cost curves affect this resuh. He found that for constant marginal 

benefits and logarithmic marginal costs, self-enforcing lEA's are limited to two countries; 

for linear marginal benefits and constant marginal costs self-enforcing lEA's do not exist. 

If marginal benefits are constant and marginal costs are linear, then self-enforcing lEA's 

are limited to either two or three countries. Finally, in the case of linear marginal benefits 

(which are assumed to be decreasing) and linear marginal costs (which are assumed to be 

increasing), the results depend upon the magnitudes and relative slopes of the two curves. 
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When the slope of the marginal cost curve (c) is small and the (absolute value of the) slope 

of the marginal benefit curve (b) is large then the gains fi'om global cooperation are small 

but the private benefits of unilateral abatement are large. In this case, nations will 

undertake reduction cutbacks without any assurance that others will cooperate. There is 

little incentive to fi-ee-ride, but also little incentive to cooperate. On the other hand, with 

large c and small b, countries will not reduce emissions even if there is full cooperation 

among other countries, but little is lost since the global benefits of cooperation are small. 

If c and b are both small but about equal, then the difference in emissions between the 

cooperative and noncooperative solutions will be large but the gains fi'om cooperation will 

be small. However if c and b are both large and about equal, then the difference in 

emissions between the cooperative and noncooperative solutions will also be large but the 

benefits fi-om cooperating will also be large. Obviously, this last case is the most favorable 

for self-enforcing DBAs. Barrett's resuks are based on some rather stringent, and not 

particularly realistic, assumptions. First, all countries are identical. Second, each 

country's net benefit function is known by all other countries. Third, abatement levels are 

instantly and costlessly observed. And fourth, the benefit (demand) function is linear. 

Barrett points out that for repeated games, the "folk theorem" may not hold even if 

the discount rate is small, since punishments cannot be enforced. This raises the issue 

Heckathom (1989) refers to as the second-order free-rider problem. He points out that a 

system of punishments is just as much a public good, subject to fi-ee-riding, as is a public 

good like emission reductions. According to Heckathom, cooperation arises in an iterated 
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Prisoner's Dilemma as a result of a sanctioning system that is created and enforced by 

group members that reward cooperation and punish defection. Therefore, each member of 

the group is faced with two questions; first, whether to cooperate at the first-level and 

provide the public good, and second, whether to cooperate at the second-level and 

participate in the system of sanctions. "Full cooperation" means to cooperate at both the 

first and second levels; "fiill defection" means to defect at both levels. A person choosing 

"hypocritical cooperation" defects at the first level but participates in the sanctioning 

system, while a "private cooperator" provides the public good but defects at the second 

level. 

Heckathom finds that private cooperation is optimal for small groups (less than or 

equal to two); fiill cooperation is optimal for group sizes fi-om three to five; and 

hypocritical cooperation is optimal in group sizes greater than six. He finds that private 

and fill! cooperation are decreasing functions of group size (this reinforces Olson's 

hypothesis about the inverse relation between the provision of the public good and group 

size). Furthermore, no matter what the parameters are, "fiill cooperation is always less 

robust against increases in group size than is hypocritical cooperation." 

The subjects of profitability and stability of international agreements are examined 

by Carraro and Siniscalco (1993). They define a coalition to be stable if no country has an 

incentive to defect from the coalition and no other country has an incentive to join (this 

appears identical to the definition of a self-enforcing treaty). The authors define four types 

of commitment that could serve as "blueprints for environmental cooperation." These 
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four types are less demanding than a commitment of full cooperation by all players, and 

may therefore be more useful when modeling international treaty formation. Another 

advantage is that they can serve as a springboard to more mclusive coalitions by the use of 

self-financed transfer payments to countries outside the coalition. 

The first type of commitment, stable commitment, occurs when only the countries 

in the coalition cooperate. Sequential commitment, the second type, takes place when 

new members that enter a coalition start cooperating immediately. The third type is fiill 

cooperation with minimum commitment. This occurs when it is possible, by the use of 

appropriate transfers, to convince other nations to cooperate. External commitment is the 

last type of commitment and results if a subset of non-cooperating countries can 

redistribute wealth so that all other non-cooperators are persuaded to cooperate and that 

this coalition (of reluctant cooperators) is stable. The redistribution of wealth (i.e. transfer 

payments) has several restrictions. First, it must be self-financed fi"om the expanded 

coalition. Second, the larger coalition must be Pareto Improving. And third, the 

redistribution is done to maximize the number of signatories. 

Carraro and Siniscaico come to the surprising conclusion that when stable 

coalitions exist, the decision of whether a country should continue to cooperate, is not a 

Prisoner's Dilemma and so non-cooperation is not necessarily a dominant strategy. 

Moreover, they find that under reasonable specifications of the benefit and damage 

functions, stable coalitions for the protection of the environment exist. 
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Like Barrett, Carraro and Siniscalco show that it is the slope of the best reply 

function that is crucial for determining the effectiveness of cooperative and non-

cooperative emission control. The more negative its slope, the greater is the incentive to 

defect from a coalition. In addition they find that if the best reply functions of two 

countries are orthogonal (cr nearly so) then a coalition of those two countries can be 

stable since free-riders cannot offset the emission reductions of the group. In contrast, 

when the slopes of the best reply functions are negative, free riders will increase their own 

emissions offsetting the emission reductions of the group. There is an implied tradeoff 

here. Negatively sloped best-reply flmctions mean that nations can achieve substantial 

emission reductions but they have little incentive to cooperate with one another. In 

addition, free-riding will be a common problem. On the other hand, orthogonal or near 

orthogonal best-reply functions result in a strong incentive to cooperate with little 

incentive to free-ride but the reduction in emissions turns out to be small. 

Three main conclusions emerge from their study. First, although there may be 

strategic interaction among countries when there is transboundary pollution, this does not 

necessarily lead to a "tragedy of the commons." There are instead a range of voluntary 

agreements possible to control emissions. Second, partial cooperative agreements that are 

profitable and stable exist among sub-groups of countries. Third, existing coalitions can 

be expanded by using the benefits from partial cooperation to finance welfare transfers. 

However, to sustain these larger coalitions, a minimum degree of commitment is required 

which, by definition, changes the rules of the game. 
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In "The Acid Rain Game" Maler (1989) modeled emission reductions of sulfur as a 

game. He recognized that the acid rain problem has several important features. First, it is 

a game of incomplete information because the damaging effects of acid rain on human, 

health and the ecosystem are not known with certainty. Second, there are many players 

involved and they do not all agree on the rules of the game. And third, the distribution of 

the benefits fi'om emission reductions (the public good in question) is asymmetric and can 

be represented by a spatial weight matrix. 

Each country seeks to minimize the cost of emission control and the cost of the 

damage done to the country by emissions from itself and other countries. M^er finds that 

a dominant equilibrium will exist only under the condition that the marginal damage 

fimction is constant and so is independent of the emissions of other countries. Second, 

only if countries have complete information on emissions, depositions, control costs, and 

damage costs will a Nash equilibrium exist. Maler recognizes that in the real world there is 

unlikely to be a Nash equilibrium and that side payments may be necessary for a 

cooperative solution. 

M^er runs several numerical simulations for Europe to determine how far the 

existing situation departs from the full cooperative solution. Using estimates on control 

cost functions from the International Institute of Applied Systems Analysis (HASA), the 

spatial weight matrix computed by the Co-operative program for monitoring and 

evaluation of the long range transmission of air pollutants in Europe (EMEP), and 

assuming a linear damage cost function, he first calibrates (or derives a baseline) model 
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and compares the costs and benefits of that model with several alternative scenarios. He 

makes the following discoveries; The fiill cooperative solution would reduce total 

emissions of sulfur in Europe by about 40% but several countries would be worse off 

under this scenario and side payments would be needed to guarantee that these countries 

would join a treaty that called for such a level of emission reductions. If side payments 

were not possible, then the best solution would be a Pareto Dommating outcome. This 

situation reduces total benefits by about 6% fi-om the fiill cooperative solution. The 

existence of a "strong equilibrium" (an equilibrium in which no coalition could gain by 

defecting against a coalition of all other countries) is unlikely in the European acid rain 

game because any member (or group of members) could do better on its own. Maler 

points to the United Kingdom and Italy as two countries that always do better by staying 

out of a treaty that limits emissions. Both countries have high emission levels and 

experience few spills fi-om other neighbors because of their geographic position and the 

prevailing wind patterns. 

A different solution to the problem of transboundary pollution problems is 

proposed by Chichilnisky and Heal (1993). Although their paper appears more relevant to 

pure public bads (such as ozone layer depletion and global warming), there is no reason 

that it could not apply to other sorts of transboundary pollution. Rather than proposing 

the use of treaties with side-payments to insure cooperation among nations, they instead 

propose to expand existing financial and insurance markets. 
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According to Chichilnisky and Heal, the solution to the problems presented by 

global environmental risks, requires tools beyond those of classical formulations of 

uncertainty in economics. The risks of global climate change are different from the risks 

usually dealt with by economists because they are; (1) difScult to assess, (2) endogenous, 

(3) correlated, and (4) irreversible. Chichilnisky and Heal propose the use of Arrow-

Debreu markets and insurance via risk-pooling to deal with the risk of global climate 

change. Under this method, agents would trade securities contingent on collective risks 

while mutual insurance contracts would cover the individual risks associated with changes 

in the global cUmate. In addition, this method gives a way for countries that differ in their 

assessment of risks to buy and sell securities based on this difference, protect themselves, 

and profit. This is an important result because even if there were agreement about the 

scientific facts of changes in the global clhnate, there might still be differences in the policy 

response. 

Finally, I turn to the question of the qualities a model of transboundary air 

pollution should have. A usefiil model would distinguish between (1) a pure public and an 

impure public good, (2) the allocative process (i.e. Lindahl, Nash, or other), and (3) the 

institutional structure (median voter or autocracy), (see Sandler, 1992; chapter 5). But in 

addition the mode! would need to deal with the spatial dimension of air pollution. It is to 

this last topic that I now turn. 
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Public Goods and Spatial Econometrics 

The very nature of transboundaiy air pollution suggests that there will oflen be a 

spatial aspect to the pollution unless it is a pure public good such as CFCs or greenhouse 

gases. If these spatial effects are not taken into account by the model, then the error term 

will exhibit spatial correlation and the parameter estimates will be biased and inconsistent 

(Anselin and GriJQBth, 1988). In a time series, the data are correlated across time, and in a 

spatial regression, the data are correlated across space. In both cases the data must be 

transformed to remove the correlation. Spatial autoregression transforms the data so that 

the error term is independent and normally distributed. 

Although the first spatial statistic, the spatial autocorrelation coefQcient, was 

developed by Student in 1907, it was not until the 1950s that spatial statistics were first 

put to extensive use by a geographer and statistician (Cliff and Ord, 1975). Since that 

time, the recognition of spatial correlation and use of spatial statistics has filtered into the 

economics profession and become more common. Granger (1969) recognized that it was 

"completely unrealistic" to assume spatial stationarity for economic variables. The 

extension of spatial autoregressive procedures into economics has been popularized by 

Anselin (1988) whose book. Spatial Econometrics: Methods and Models, serves as an 

excellent introduction to the subject. An excellent surv^ of the current literature on the 

analysis of spatial data can be found in Cressie's 1993 book; Statistics for Spatial Data. In 

addition, a special issue of Regional Science and Urban Economics vol. 22 (1992) was 

devoted to spatial statistics and econometrics. 
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Dubin (1988) developed a maximum likelihood method for estimating regression 

coefiBcients with spatial correlation in the error term and successfully used it in a hedonic 

regression of housing prices, later using the method to look at nighbohood quality (Dubin, 

1992). The results showed a dramatic improvement over the use of ordinary OLS. 

Neighborhood variables and quality attributes became positive and significant, as one 

would expect. The bane of previous hedonic studies had been that the variables often had 

the wrong sign and were rarely significant. 

Murdoch, Rahmatian, and Thayer (1993) used a spatial autoregressive term to 

analyze the spillins fi-om an empirical estimation of a median voter model. They uncovered 

a relationship between recreation levels and ambient levels of air pollution. The spatial 

weight matrix consisted of the amount of recreation expenditures that spilled over into 

neighboring communities (both an inverse distance formula and a negative exponential 

distance formula were used to determine the elements of the spatial weight matrix). Since 

recreation services are an impure public good, the greatest benefit is derived by people 

living closest to the good with benefits trailing off as one moves further away. Another 

feature of a spatial weight matrix based on distance is that it is symmetric. This occurs 

because it should be just as easy for people to drive fi'om community A to community B to 

enjoy a recreation opportunity as it would for people to drive fi'om community B to 

community A. Therefore only distance determines the level of spillins (i.e. the spatial 

weight). If, on the other hand, travel was more difiBcult in one direction than another, the 

symmetric nature of the spatial weight matrix would not hold. 
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In dealing with transboundary pollution, the assumption of a symmetric spatial 

weight matrix is not always accurate. For example, meteorological and geographical 

considerations such as wind direction and mountain ranges wUl increase the probabihty of 

the pollutant traveling in certain directions. However some transboundary pollutants will 

have symmetric spatial weight matrices. Pollutants such as CFCs and CO2 can be 

considered pure public goods. They are both nonrival and nonexcludable and have spatial 

weight matrices which consist entirely of ones. 

More commonly, a transboundary pollutant will be an impure public good with 

both public and private benefits. For example, sulfur dioxide and nitrogen oxide emissions 

are nonexcludable but only partially nonrival and generate non-symmetric spatial weight 

matrices. In addition, these pollutants have different residence times in the atmosphere. 

Nitrogen oxides remain in the atmosphere longer than sulfur dioxide^ so that the spatial 

weight matrix for nitrogen oxides is more evenly distributed than the matrix for sulfur 

dioxide. Residence times in the atmosphere are in fact, the main determinant of the degree 

of publicness of the pollutant. The longer an air pollutant remains in the atmosphere, the 

more public effects predominate over private ones. 

While spatial weight matrices are often computed by using a distance formula, the 

matrices for a transboundary air pollutants are much more difficult to calculate. In the 

case of sulfur dioxide, and nitrogen oxides, monitoring stations and computer models are 

required to develop the spatial weights for each country. Fortunately, the spatial weight 

NOx remains in the atmosphere from 2 to 8 days while sulfur emissions remain from .01 to 7 days 
(Alcamo and Rimca, 1986). 
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matrix (sometimes referred to as a diffusion or transport matrix) for the European 

countries has already been calculated for these pollutants as part of the program of study 

began under LRTAP (Sandnes, 1993). The Meteorological Synthesizing Center-West 

(MSC-W) at the Norwegian Meteorological Institute produces yearly matrices based on 

reported emissions, collected depositions, and computer models. 

This dissertation breaks new ground in the area of existing public goods literature 

in three ways. First, it uses an advanced spatial autoregressive model that can deal with 

both time-series and cross-section data. Second, it models transboundary air pollution as 

an impure public good and uses a spatial weight matrix to characterize fundamental 

differences between transboundary air pollutants. Third, the model is empirically tested 

using actual time-series cross-section data for 25 European countries regarding emissions 

reductions. 

The work in the dissertation can be distinguished from several important papers 

that have recently dealt with the issues of transboundary air pollution and/or the spatial 

aspects of public goods. The paper by M^er (1989) looked only at sulfur emissions and 

used a simulation analysis to find the Pareto-efl5cient (fiill-cooperation) outcome which 

was compared with: 1) the Nash equilibrium, 2) a fiill cooperative equilibrium with side 

payments, and 3) a Pareto dominating outcome without side payments. This dissertation 

examines both sulfur and NO* emission reductions over the course of several years to see 

whether emission reductions were consistent with a Nash equilibrium based on 

independent adjustment. 
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The model used by Murdoch, Rahmatian, and Thayer (1993), was used to examine 

recreation demand expenditures by local governments using a median-voter model and a 

svmmetric spatial weight matrix based on distance. In contrast, my dissertation uses an 

oligarchy choice model and a non-svmmetric spatial weight matrix. Unlike the "snapshot 

in time" approaches used by Murdoch, Rahmatian, and Thayer (1993) and other empirical 

works dealing with public goods, the model used here allows year by year comparisons to 

be made using a single regression. In addition actual country data is used which gives the 

paper an empirical grounding distinguishing it from the theoretical papers of Barrett 

(1994), Carraro and Siniscalco (1993), and Heckathom (1989) which examined the 

optimal provison of a generalized public good. Finally, the examination of how specific 

spatial weight matrices affect the payoffs of a game is a new contribution to the theory of 

public goods, although a general discussion of the problem can be found in Sandler and 

Sargent (1995). 

In the next chapter I turn my attention to the formation of transnational treaties 

when the intentions of other nations are uncertain. I focus on the variety of outcomes that 

occur when nations are attempting to manage a transnational public good. The probability 

of cooperation is shown to depend upon the number of required members in the group, the 

pattern of payoffs, transactions costs, and the technology of public supply aggregation. 
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CHAPTER 3. MANAGEMENT OF TRANSNATIONAL COMMONS: 
COORDINATION, PUBLICNESS, AND TREATY FORMATION 

Introduction 

Although the difilision of pollutants among neighboring states has been recognized 

for some time, recent exigencies (e.g., the appearance of a hole in the stratospheric ozone 

shield, the accumulation of atmospheric carbon and other greenhouse gases, and the raised 

acidity of soils and fresh-water bodies) have underscored the need to consider pollution of 

a regional and even global nature. Such pollution phenomena have transnational 

implications that may require coordination that transcends the nation-state. 

Actions at the national level may ameliorate the problem, but they are anticipated 

to fall short of a social optimum, because nations are not expected to include the marginal 

impact of their behaviors on the residents of other nations. Transnational cooperation 

requires an enforceable agreement or treaty that restricts pollution beyond nationally 

imposed limits. Moreover, treaties must be individually rational so that each participant 

anticipates a net gain from the agreement (Barrett, 1991; 1992). 

The institution of transnational treaties raises a host of issues. First, the formation 

of such treaties must be addressed, and this raises the question of the minimal-sized 

coalition needed for ratification (see Black, Levi, and de Meza; 1993). An increase in the 

number of ratifiers creates a trade-oflf between the eflBciency gains from increased 

participation and the opportunity to free ride by the nonparticipants. Transaction costs 

may also rise as the size of the ratification group increases. Second, treaty adherence must 
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be investigated, and this involves the notions of uncertainty and time-consistent behavior, 

in which short-run gains from defection may outweigh long-run losses from punishment 

once a treaty is signed and a contingency occurs.' Third, treaties may need to evolve over 

time as technology alters the configuration of net payoffs. 

The focus here is on treaty formation when efforts must ^ coordinated among a 

minimal-sized group so as to make cooperation worthwhile. In particular, I stress the 

ability to achieve cooperation when the actions of others are uncertain. When a minimal-

sized coalition is needed, and acting alone is more beneficial than cooperating when the 

minimal threshold is not attained or maintained, incentives exist for potential participants 

to act alone even though cooperation is the Pareto-optimal equilibrium. This incentive to 

defect gives rise to the uncertainty. Throughout, I ignore the existence of an enforcement 

mechanism, because there is no such mechanism for transnational treaties. Thus, nations 

cannot be certain that others will abide by a treaty, and must act based on their skepticism. 

A coordination game is shown to be appropriate for transnational commons problems that 

necessitate a minimal set of cooperators.^ This is not to say that a coordination game is 

the essence of all transnational environmental problems. I assert, instead, that when 

minimal-sized coalitions are needed for effective cooperation, these problems may be best 

characterized as a coordination game. I investigate the diversity of public good 

' For example, a nation may sign a treaty pledging never to negotiate with terrorists when hostages are 
taken, but may then decide to renege if a sufBciently valuable person is abducted, even though such 
behavior invites more hostage-taking. 

 ̂On coordination games, see Cooper et al. (1990), Farrell (1987), Runge (1984, 1990), and van Huyck, 
Battalio, and Beil (1990). 
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characteristics among alternative commons problems. Most analyses^ lumped commons 

problems together as sharing the same public good characteristic so that a single 

prescription and model are intended to apply to a host of commons scenarios (Carraro and 

Siniscalco, 1993; Herber, 1991). 

Coordination Games and Treaty Formation 

For many transnational commons problems, a minimal degree of international 

coordination is required if an agreement to curb pollution is to have beneficial effects for 

the signers. This follows because, without this threshold of cooperation, nonparticipants 

can fi-ee ride on the restraint of the participants, thereby severely limiting or offsetting 

pollution cutbacks. Thus, in the case of stratospheric ozone depletion, the major 

producers'* of chlorofluorocarbons (CFCs) must all be party to the treaty or else a 

nonratifier may expand its CFCs market share as the treaty goes into effect. This action of 

the nonratifier could give it suflBcient gains to offset losses fi-om its added pollution. 

Moreover, treaty members must be reasonably certain, as defined below, that ratifiers will 

adhere to their pledged actions. 

To capture these features, I chararterize some treaty formations as coordination 

games among two or more nations, in which potential ratifiers are uncertain about the 

actions of others. This paradigm permits me to focus on the influence of group size, the 

 ̂A notable exception is Chichilnisky and Heal (1993), which indicated the diverse public character of 
global commons problems. 

Most CFCs were produced by 16 firms located in the U.S., Europe, and Japan. Five of the 16, including 
Dupont with about 25 percent of the market share, are located in the U.S. (Morrisette et al. 1990, pp. 14-
5). 
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degree of publicness, payoff configurations, and transaction costs on the ratification of 

treaties. A classic, but not the only, instance of a coordination game is the Stag-Hunt 

game presented in matrix a of Figure 3.1. Each player has two strategies; hunt stag or 

hunt hare, which I denote as C (cooperate) and D (defect), respectively. To bag a stag, 

both hunters must coordinate their actions to obtain payoffs of 2 for each player. If, 

however, only one player hunts stag while the other hunts hare, the stag hunter comes 

back empty-handed (i.e., a payoff of 0) and the hare hunter succeeds in snaring a hare 

worth 1. When both hunt hare, each receives 1 as a payoff. In matrix a, the rows indicate 

the two strategies of player 1, and the columns denote those of player 2. The first number 

in each cell is the payoff or net gain of player 1, while the second number is the net gain of 

player 2. For either player, there is no dominant strategy that gives higher payoffs no 

matter what the other player does, because a payoff of 2 exceeds a payoff of 1, while 0 

does not exceed 1. 

Even though coordination games do not contain dominant strategies, they possess 

multiple Nash equilibria in terms of pure and mixed strategies. A Nash equilibrium results 

when neither player would unilaterally want to change his/her strategic choice. As such, a 

Nash equilibrium represents the best (optimizing) response for a player, given his/her 

opponent's (opponents') best response(s). In matrix a, the cells marked with an asterisk 

are the two pure-strategy equilibria. When both hunt stag (hare), neither could gain fi-om 

hunting hare (stag) alone, because 2 > 1 (1 > 0). 
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Figure 3.1. Coordination Games 
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A third Nash equilibrium involves mixed strategies in which each pure strategy is 

played in a probabilistic &shion. To find this mixed-strategy equilibriimi, I determine the 

probability q of cooperation for player 2 that makes player 1 indifferent between strategy 

C and D. Similarly, the probability p of cooperation for player 1 is what makes player 2 

indifferent between the two strategies. Once p and q are ascertained, equilibrium 

probabilities for defecting (i.e., hunting hare) equals 1 - q and 1 - p for players 2 and 1, 

respectively. The relevant probabilities for players 1 and 2 are indicated besides the 

respective row and column in matrix a. Solving for p and q, I get p = q = 1/2. 

therefore, player 1 is uncertain as to whether the other player will hunt stag, then player 1 

should hunt stag provided that he/she expects the other player to hunt stag with 

probability greater than 1/2. 

by analogy, two nations are contemplating a treaty to control pollution and both 

must act to realize any cooperative gains, then the Stag-Hunt game is appropriate. When 

nations are certain of the other nation's cooperative pledge, the (C, C) equilibrium would 

be focal, inasmuch as its payoffs dominate those of (D, D) (see Harsanyi and Selten, 1988, 

80-1). however, nations are distrustful of one another, then a mixed strategy makes 

sense, in which each nation must anticipate the likelihood of cooperation on the part of the 

other nation. Distrust is relevant whenever cooperating alone has a lower payoff than 

defecting, because the player cannot be certain that the needed coordination will be 

forthcoming. In experimental research, van Huyck, Battalio, and Beil (1990) foimd that 

coordination failures in such games occurred frequently despite the focal nature of the 
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coordination equilibrium. Moreover, the larger was the minimal size of the required 

coalition, the greater was the possibility of this coordination failure. 

This analogy can be extended to a case of homogeneous players or nations that 

require, say, eight ratifiers to achieve gains fi'om a cooperative pact or treaty. Suppose 

that eight cooperators would each receive 2, while any number less than eight gains 

nothing fi-om cooperation. Further suppose that mdependent behavior gives a benefit of 1. 

This scenario generalizes the Stag-Hunt game to eight players. If players are uncertain 

about the actions of others, then each agent would cooperate provided they anticipated 

that all seven other players in aggregate would cooperate with probability greater than 1/2. 

When players' probabilities are independent, each player must then cooperate with 

probability greater than .9057 (the seventh root of .5) to make cooperation a desirable 

strategy. With a minimal-sized group as small as eight, each player must be viewed as 

quite likely to ratify and adhere to the cooperative agreement to make it worthwhile. 

Obviously, an increase in the minimal-sized groups of ratifiers cuts doAvn on the likelihood 

of ratification, because each player must be more certain of the actions of others to ratify 

for it to be in the player's own interest to ratify. 

In Table 3.1,1 indicate the probability of ratification and adherence required of 

each player for alternative sized groups and overall adherence probabilities for the other 

n - 1 ratifiers. Consider a .5 overall probability of adherence. If 41 countries must 

cooperate for any to achieve gains, then each must be expected to cooperate with 

probability .9828 or greater to make ratification desirable. As shown, any increase in the 
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Table 3.1. Required Anticipated Probability of Treaty Adherence for Each 
Potential Participant When Agents are Homogeneous and a Minimal-
Sized Coalition is Needed 

Minimal Required Probability of Adherence for Collective of Other Participants 

Number of Other 
Participants .1 .3 .5 .7 .9 

2 .3162 .5477 .7071 .8367 .9487 
3 .4642 .6694 .7937 .8879 .9655 
4 .5623 .7401 .8409 .9147 .9740 
5 .6310 .7860 .8706 .9311 .9791 
6 .6813 .8182 .8909 .9423 .9826 
7 .7197 .8420 .9057 .9503 .9851 
8 .7499 .8603 .9170 .9564 .9869 
9 .7743 .8748 .9259 .9611 .9884 

10 .7943 .8866 .9330 .9650 .9895 
20 .8913 .9416 .9659 .9823 .9947 
30 .9261 .9607 .9772 .9882 .9965 
40 .9441 .9703 .9828 .9911 .9974 
50 .9550 .9762 .9862 .9929 .9979 
60 .9624 .9801 .9885 .9941 .9982 
70 .9676 .9829 .9901 .9949 .9985 
80 .9716 .9851 .9914 .9956 .9987 
90 .9747 .9867 .9923 .9960 .9988 

100 .9772 .9880 .9931 .9964 .9989 
120 .9810 .9900 .9942 .9970 .9991 
140 .9837 .9914 .9951 .9975 .9992 
160 .9857 .9925 .9957 .9978 .9993 
180 .9873 .9933 .9962 .9980 .9994 

Note: The minimal-sized coalition is one greater than the number of other participants needed. 
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minimal-sized group raises the cooperation probability required to the potential 

participants. With suflBciently great adherence probabilities for the other participants, near 

certainty may be required for even small groups. Thus, each player must choose 

cooperation with probability greater than .9147 for a group of 5 to make cooperation 

desirable when an overall adherence probability of .7 is is required. I show below what 

determines the overall adherence probability for the collective of other participants. Table 

3.1 highlights a number of important features of coordination games. First, even a modest 

sized group may experience coordination failure unless potential participants are 

reasonably certain that others will cooperate. This may not bode well for global treaties, 

unless very limited number of particpants are needed. Second, the probability of 

cooperation required of participants reaches near-certain levels rapidly and then increases 

slowly with additional group size requirements. For an adherence probability of .7, groups 

of 41 and 181 need individual probabilities of .9911 and .9980, respectively, to make 

cooperation desirable. 

Thus far, my analysis paints a very pessimistic picture of coordination among a 

minimal-sized coalition. Several important caveats are in order. First, I emphasize that 

the analysis only applies to commons problems where a minimum coalition or threshold 

effort is needed before benefits can be gained.^ If fi-ee riding can undo the cooperative 

gains that others provide, then this scenario is justified. Second, coordination probabilities 

 ̂ Even if an agreement only becomes binding when the minimum coalition signs, uncertainty may arise 
owing to adherence problems. Nations may later renege on the treaty due to a short-term gain that might 
benefit only a subset of individuals. 
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may not be independent as assumed. If these probabilities are correlated, then the 

likelihood of cooperation would be greater than shown in Table 3.1. This correlation can 

be achieved through the leadership of a major country, whose actions induce others to act 

(Runge, 1993; 1994). Third, preplay communication can also increase the likelihood of 

coordination, but may not eliminate the uncertainty for some kinds of coordination games. 

Farrell (1987, 36-9), for example, has shown that preplay communication still leaves 

uncertainty for "Battle of the Sexes" coordination games. This analysis applies to some 

other kinds of coordination games. Given these caveats, my analysis must be viewed as 

providing a pessimistic mdex (Runge, 1993; 36). Much of the analysis here presents this 

pessimistic view, but the qualitative results would apply to a more optimistic correlated 

view. 

In Figure 3.1, matrices b-e represent other cases of two-player coordination games 

for symmetric and asymmetric players. By examining these matrices, I am able to 

ascertain the determinants that influence the overall adherence probability. Matrix b is a 

symmetric version of the coordination game where U > A > B > 0, so that mutual 

cooperation yields greater payofis than mutual defection. Furthermore, mutual defection 

is better than defecting alone. Given these payoffs, there is no dominant strategy, but 

there are three Nash equilibria — (C, C), (D, D), and a mbced-strategy equilibrium. By 

equating player I's expected payoff from strategy C (weighted by player 2's probabilities q 

and 1 - q) to player I's expected payoff from strategy D (weighted by player 2's 

probabilities), I can solve for the Nash equilibrium level of q. A similar calculation can be 
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executed using player 2's expected payoffs weighted with player I's probabilities of p and 

1 - p. For the symmetric matrix, a mixed-strategy equilibrium results when 

When p and q exceed this value, cooperation is the best strategic choice.^ The ratio in 

equation (3.1) represents the coordination probability that each player requires of the 

other player in order to want to cooperate. A smaller probability favors successful 

coordination, since a player needs to be less certain of the other player's intention to 

cooperate in order to reciprocate. Equation (3.1), shows that large cooperative gains (U) 

and small noncooperative gains (A) promote the cooperative equilibrium by reducing the 

required adherence probability. An increase in the payoff (B) associated with cooperating 

alone also promotes cooperation, since I have 

If cooperation has private payoffs even when overall coordination is not achieved, then a 

player needs to be less certain about his/her counterpart's intentions when deciding to act 

in a cooperative fashion. This result proves useful when evaluating the likelihood of treaty 

formation for various transnational commons dilemma. 

Matrix b can be generalized to a symmetric game with n homogeneous players. 

Such a generalization would imply that, at least, n players must cooperate if each 

participant is to receive a payoff of U. When less than n players coordinate, each receives 

 ̂For 2-player games, a related notion for choosing an equilibrium is that of risk dominance, introduced by 
Harsanyi and Selten (1988, 82-90). For matrix b, equilibrium (C, C) risk dominates (D, D) if 
(U - A) / (A - B) > (A - B) / U - A) or (U - A)(U - A) > (A - B)(A - B), so that the product of the gains 
from cooperating exceeds the product of the gains from mutual defection when the other player defects. 

p  =  q  =  ( A - B ) / ( U - B ) .  (3.1) 

dq / dB = dp / dB = (A - U) / (U - B)^ < 0. (3.2) 
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B for cooperating and A for not cooperating. If players are uncertain about the 

cooperation intentions of others, then cooperation is a desired strategy provided that a 

player believes that the n -1 required additional cooperators will follow through with 

probability greater than q. This, in turn, implies that for the pessimistic case each 

individual must be expected to cooperate by at least the n - 1st root of q, which for even 

modest group sizes may require near certainty as shown in Table 3.1. 

In Figure 3.1, matrix c depicts another two-player symmetric coordination game, 

but where payoflfs for defecting (A or E) depends on whether or not the other player 

defects. When the intentions of others are unknown, the mixed-strategy equilibrium is 

which differs from equation (3.1) by the additive factor (A - E) in the denominator. At 

least two cases can be distinguished; U > A > E > B and U > E > A > B. In the first, 

cooperation is promoted as compared with matrix b, while, in the second, cooperation is 

not fostered. This follows because unilateral defection is more (less) profitable in case 2 

(case 1) than in matrix b. Treaty sanctions are meant to foster the payofiF configuration of 

case 1. 

Matrices d and e are used to indicate two asymmetric coordination games. In 

matrix d, player 2 gains relative to player 1 when defecting for A > 1. That is, player 2 is 

more skilled in going it alone (hunting hare) than player 1. The mixed-strategy equilibrium 

requires 

p  =  q  =  ( A - B ) / [ U - B  +  ( A - E ) ] ,  (3.3) 

p  =  A / U >  1  / U  =  q ,  (3.4) 
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so that player 2 needs greater assurance than player 1 that his/her counterpart will follow 

through with cooperation. Heterogeneity involving defection payoffs is not anticipated to 

support coordination when players' intentions are uncertain (also see Runge 1984). 

I next consider heterogeneity in terms of coordination gains. For S > U in matrix 

e, player 2 gains relative to player 1 when coordination is achieved As a consequence, 

player 2 requires less certainty that player 1 will cooperate, since 

Matrices d and e have n-player analogues in which the overall adherence 

requirement equals the product of the mdividual probabilities associated with cooperation. 

Thus, the overall adherence probability for the rest of the collective is conditional on all 

n -1 players, whose probabilities can differ, cooperating. As before, an increase in group 

size, ceteris paribus, reduces the likelihood of coordination. 

Thus far, I have considered discrete choices in which each player can cooperate or 

not. The analysis could be extended to continuous choices where each of n players must 

exert more than a minimal effort of x for the coordmation to succeed. If each individual's 

effort is independent and identically distributed with a common cumulative distribution 

function (cdf) equal to F(xj), then the cdf for the minimum is 

Even a small proba.bility that the minimum might not be met will drive FminCx) to 1 and 

make cooperation unlikely. Of course, the standard caveats apply. 

p =  1  / S <  1  / U  =  q .  (3.5) 

FUx) = l-[l-F(Xj)r. (3.6) 
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Transaction Costs 

When nations are interested in cooperation, transaction costs are expended during 

negotiations and throughout the duration of an agreement. For coordination games, the 

likelihood of a cooperative agreement can depend on the amount of transaction costs and 

the manner by which it is incurred. To demonstrate, I extend my analysis of coordination 

games to various transaction costs scenarios. As before, I present a pessimistic viewpoint 

by assuming probability independence and the absence of preplay communication. 

The simplest two-player case corresponds to matrix fin Figure 3.1, where 

transaction costs of T are incurred by any player who cooperates. In this baseline case, 

only the cooperators pay the transaction costs per person, which are the same whether 

coordination is achieved or not. Each player receives U - T when coordination is 

achieved; B - T when cooperation is not reciprocated; and A when acting independently. 

If these transaction costs are less than U - A (i.e., the gains from cooperation), then the 

coordination equilibrium continues to payoflf dominate the noncoordination equilibrium. 

When players are uncertain about the other player's intention, the cooperation equilibrium 

is the desired outcome when 

p  =  q > ( A - B  +  T ) / ( U - B ) .  ( 3 . 7 )  

Compared with the adherence probabilities in equation (3.1), the new probabilities are 

now higher, thus cutting down on the likelihood that coordination will succeed as 

compared with the absence of transaction costs. Quite simply, transaction costs limit 



www.manaraa.com

cooperative gains and this, in turn, makes players want greater certainty that others will 

carry through with cooperation/ 

I next distinguish between transaction costs, T, when coordination is achieved, and 

those, T, when coordination is not achieved, where T > T. Full coordination is now 

anticipated to be more costly than partial cooperation. For matrix f, this alteration means 

that B - T is replaced with B - T in the ofif-diagonal cells. The mixed-strategy equilibrium 

now requires 

p  =  q  =  ( A - B + T  ) / ( U - T + T - B ) ,  ( 3 . 8 )  

which is less than the probability in equation (3.7), since the same positive factor, T - T 

has been subtracted from the numerator and denominator of equation (3.7). As compared 

to the first instance of transaction costs, each player is now willing to cooperate with less 

certainty that the other player will also cooperate. This follows because the losses from 

misjudging the other player's intentions to cooperate [i.e., U - (B - T )] are now smaller 

than the first case. An apt analogy for treaties and agreements concerns refijndable 

transaction costs or payments, since partial refundability essentially acts to make T less 

than T, and thereby fosters the likelihood of an agreement. A usefiil institutional principle 

to remember is that refundability in the absence of a coordinated equilibrium is inducive to 

an agreement. 

' This case also reduces the risk dominance of (C,C) over (D,D), since risk dominance now requires 
(U - A - T)(U - A- T)>(A-B + T){A - B + T) which is more stringent and less apt to be satisfied than 
the condition in footnote 6. 
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A final two-player case allows transaction costs asymmetry so that those of, say, 

player 1 exceed those of player 2. Player 1 would then require a greater likelihood that 

player 2 will cooperate so that q > p. 

For a minimal-sized coalition of n players, a number of transaction costs scenarios 

are relevant. Suppose that the payoffs in matrix f apply to the n-player case, so that 

coordination gives each player U - T; coordination failure gives B - T to the cooperators 

and A to the others, and uniform defection gives A to each player. The likelihood of 

coordination then falls with n and is less than in the absence of transaction costs. Another 

relevant case has transaction costs, T, rising as the minimal number, n, of cooperators 

increases, while coordination benefits are independent of n. An increase in n again reduces 

the likelihood of coordination, but at a faster rate than the previous case, because n affects 

the individual adherence probabilities by raising q and the number of roots of this 

probability that must be found. Another case involves a proportional increase in U and T 

equal to n so that U - T is unchanged but B - T falls. An increase in n again works against 

the achievement of coordination by raising q and the number of required roots of this 

probability. Even if net benefits fi-om coordination are favorably influenced by group size 

in proportion to n, agreements are less likely, because n has an exponential influence 

through root taking on individual cooperation requirements. For most reasonable 

scenarios, transaction costs enhance the negative impact on treaty formation associated 

with an increase in the minimal coalition. 
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The Technology of Public Supply Aggregation 

Another important, but overlooked, factor in the study of coordination games and 

treaty formation is publicness attributes of the coordination problem under consideration. 

In the environmental literature, pollutants from diverse sources are often modeled with a 

summation technology (see, e.g., Barrett, 1991, 1992; Eyckmans, Proost, and Schokkaert, 

1993; Herber, 1991). In other instances, cooperative solutions are analyzed for a generic 

problem without distinguishing among diverse pollution scenarios (e.g. Black, Levi, and 

de Meza, 1993; Carraro and Siniscalco, 1993). I intend to show that the technology of 

public supply aggregation,^ which indicates how individual pollution activities add to the 

total pollutants experienced, has important implications for the achievement of a 

coordination equilibrium. 

For simplicity, I distinguish four such technologies: (1) summation, (2) weighted 

summation, (3) weakest link, and (4) joint products. Let g denote the pollution emissions 

of nation (player) i, and let G represent the aggregate emissions of all nations (players). If, 

instead, the cleanup or protection of a commons is investigated, then g; indicates 

individual protective actions and G depicts aggregate protection. For a summation 

technology, 

G = i ; g i  ( 3 . 9 )  
i= I  

' Hirshleifer (1983) used the alternative term, social composition function, to denote this technology. 
Also see Sandler (1992, chapters 2-3). 
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so that each contributor's impact on aggregate G is identical at the margin. This 

technology characterizes pure public good subscription models as well as analyses of the 

pure commons. Global examples include ozone shield depletion and global warming. 

Marginal impacts differ among players according to the weights, Wi, in the 

weighted-sum technology: 

G = i ; w , g ,  ( 3 . 1 0 )  
i= l  

which applies to impure public goods where the location of the source of the pollutant 

makes a difference owing to wind direction, barriers, or other considerations. Acid rain is 

best characterized by such a technology. 

A third technology is weakest link in which 

G = min{gi,g2,...,g„}, (3.11) 

where the smallest provision effort level of the group determines the collective provision 

(Hirshleifer 1983). Prophylactic measures taken to forestall the spread of a disease or a 

pollutant abide by this technology. 

A fourth technology is that of joint products where an activity gives rise to 

multiple outputs that may vary in their degree of publicness. For example, a pollutant may 

have both a country-specific localized impact on the emitter and a global impact or public 

effect on all nations. 
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Perhaps the best means for demonstrating the potential impact that these four 

technologies can have on coordination equilibria is through a series of numerical examples 

for 2-player bimatrix games. In Figure 3.2, the top two matrices correspond to a weakest-

link and joint product technology. As before, each player has two strategies: cooperate 

(C) or defect (D). In the weakest-link example, each player can contribute 1 or 0 units to 

a collective activity. Each player must contribute a unit at a cost of 3 before per-player 

gross benefits of 5 can be received. Thus, a nonlinear threshold effect is assumed. When 

both players contribute, each receives 2 in net benefits (5 - 3) fi-om coordinating efforts. If 

neither contributes, then each gets 0, while a single contributor gets -3, since the smallest 

contribution is 0 units and costs for the single unit must be paid. With uncertain 

intentions, the mixed-strategy equilibrium occurs when p = q = 3/5. Weakest-link 

technologies are invariably associated with coordination game structures. At the 

coordination equilibrium, players match one another's contributions, because there are no 

gains, just costs, fi"om exceeding the minimal contribution. If the players can contribute 

additional units of the collective activity, then the pure-strategy Nash equilibria occur 

along the primary diagonal where matching takes place. The n-person analogue for the 

weakest-link technology also implies matching behavior. 

Joint products may also give rise to coordination games as illustrated by matrix b 

in Figure 3.2. This two-player game's payoffs are based on each unit of an individual 

contribution yieldmg an individual-specific benefit of 5 and a public benefit of 2. The 

public benefit is experienced only if a minimal contribution of 2 units is achieved. The 



www.manaraa.com

63 

Player 2 Player 2 

C D C D 

Player 
C 2 ,2  -3 ,0  

Player 
C 3 ,3  -1 .0  

1 
D 0, -3 0 ,0  

1 
D 0 , -1  0 ,0  

a. Weakest Link b. Joint Product 

Player 2 Player 2 

C Nash C Nash 

Player 
C 12, 12 0 ,3  

Pl^er 
C 4 ,4  -2, 1 

1 
Nash 3 ,0  3 ,3  

1 
Nash 1 , -2  1, 1 

c. Summation d. Weighted Sum 

Figure 3.2. Numerical Examples Of Alternative 
Technologies Of Public Supply Aggregation 
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individual-specific benefit follows whether or not the minimal contribution is met. In this 

example, each unit costs 6. When coordination occurs and each player provides a unit, the 

payoflfs to the players are 3 apiece, which equals the sum of the private benefit of 5 and 

the public benefit of 4 (= 2 times the number of units provided) minus costs of 6. If only 

one player contributes, then the contributor receives -1 (=5-6) and the other player 

receives 0. The absence of any contributions gives nothing to each player. When the joint 

product technology is associated with a coordination game, the private benefits act to raise 

the gains fi-om unilateral cooperation. As shown earlier, this serves to foster cooperation, 

since smaller probabilities of cooperation on the behalf of the other player are required in 

order to make contributing desirable. Paradoxically, large private benefits relative to 

public benefits foster cooperation, but the net gains fi'om such cooperation can be 

relatively small owing to the extent of private benefits.® Nevertheless, joint products can 

be supportive of treaties and coordinated actions. 

The bottom two matrices involve summation and weighted sum technologies 

where a minimal degree of coordination is mandated before the summed benefits fi^om 

spillins (i.e., gains derived fi-om the actions of others), beyond the Nash equilibrium, are 

experienced. If, however, a minimal degree of coordination is not required, then 

summation and weighted sum technologies imply a Prisoners' Dilemma game with a 

dominant strategy to defect (Sandler 1992, 39-41). Hence, minimal coordination is a 

' This result has the same character as that of Barrett (1991, 1992) who found that treaties are more likely 
in those cases where the relative gain is small. 
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crucial feature here. Each player has two strategies: (1) to provide the Nash contribution 

of one unit, or (2) to provide the cooperative (C) contribution of four units. Each unit 

costs 5. For the summation matrix, each unit contributed gives the contributor 4. Spillin 

benefits of 4 are experienced fi-om only the first unit provided by others until at least eight 

units in total are provided. Once this threshold is achieved, every unit of provision by 

others gives 4 in spillin benefits. therefore, both players provide four units, then each 

receives net benefits of 12 [ = (8 x 4) - (5 x 4)]. When one player provides four units and 

t h e  o t h e r  c o n t r i b u t e s  o n e  u n i t ,  t h e  f o u r - u n i t  c o n t r i b u t o r  r e c e i v e s  0 (  =  4 x 4  +  4 -  4 x 5 ) ,  

since spillin benefits are derived fi'om only the first unit contributed by the other player, 

and the one-unit contributor gets 3 ( = 4 + 4 - 5). If both contribute one unit, then each 

receives 3 in net benefits. For uncertain intentions, mutual cooperation is desirable if p 

and q exceed 1/4. 

This example forms an interesting contrast with a weighted-sum technology where 

the underlying payoffs are the same except that spillins, when they occur, only give 2 per 

unit in benefits, implying that one's own actions are more productive than those of others. 

The payoffs for matrix d are computed as before and again result in a coordination game. 

If intentions are unknown, then p and q must now exceed 1/2 if coordination is best. 

When compared to the summation case, the weighted-simi technology reduces the net 

gains fi'om cooperation, so that a coordinated equilibrium is more diflScult to achieve. The 

smaller is the weight given to spillins, the less likely is cooperation. Once again, I see that 

the technology of public supply aggregation can impact the likelihood of cooperation. 
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The Relationship Between Spatial Weights and Public Supply Technologies 

If a transboundaiy pollutant is an impure public bad, the decision to reduce the 

pollutant will result in some private benefits (cleaner air or less acid rain) whether or not 

coordination is achieved with other nations. All other things equal, the cooperative 

solution comes closest to the individual solution when the transboundary air pollutant is 

closest to a private good. The technology of public supply is one determinant of the level 

of private benefits. A weighted sum technology has the effect of making nations with the 

greater weights (greater private benefits) more likely to cooperate, emissions of sulfur and 

nitrogen abide by a weighted sum technology. Each nation gains private benefits fi^om 

reducing pollution, but in addition there are public benefits to the other nearby nations. 

By examining various spatial weight matrices, it is possible to see how different 

public supply technologies can be represented. For simplicity, assume that there are only 

two nations—nation A and nation B~and that emissions fi^om one nation are either 

deposited in the country of origin or in the other country (i.e. no pollution lands outside of 

nation A or B). In this case a two by two spatial weight matrix is required, with the 

emitters represented by columns and the receivers represented by rows. Figure 3.3 

contains eight spatial weight matrices representing four types of public supply 

technologies. The first matrix in each row records depositions in terms of the quantity of 

pollutant deposited, while the second matrix represents depositions as a percentage of 

emissions. In each of the four cases, nation A emits ten units of pollution, while nation B 

emits five units of pollution. 
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Figure 3.3. Spatial Weight Matrices 
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In the first case (matrices a and b) pollution is a private bad (it is both rival and 

excludable) and so does not classify as a transboundary poUutant. The ten units emitted 

by nation A affect only nation A. Therefore, a 10 and a 0 are the values for the first 

column. Likewise the five units emitted by B affect only B. Since no pollution fi-om B 

falls on A, a 0 is the first element of the second column. And because all five units of 

pollution fi'om B are deposited on its own soil, a S is the second element of the second 

column. Notice that the sum of the first column is ten and the sum of the second column 

is five, corresponding to the emissions coming fi-om each country. 

In matrix b the depositions are represented as a percentage of emissions. 

Therefore since 100% of A's emissions are deposited on A, and 0% are deposited on B, 

the first column values are 1 and 0. The same reasoning applies to the elements of column 

B giving a 0 and 1 respectively. In other words, the spatial weight matrix, for a private 

good, expressed in percentage terms, has 1 's along the diagonal and O's for the off-

diagonal elements. Note that the sum of the columns adds up to 100% 

In the case of a pollutant that is a private bad, a nation that equates the marginal 

private benefit of reducing pollution with the marginal private cost will achieve the social 

optimum since the marginal private benefits of pollution reduction are identical to the 

marginal social benefits. Each nation will select the optimal amount of pollution 

emissions, since there are no public effects to consider. An example of a pollutant that is a 

pure private bad would be nuclear waste (assuming it is not dumped at sea or transported 

secretly to another country). 



www.manaraa.com

An identical spatial weight matrix is also possible for the case of an impure public 

bad that is rival but non-excludable, but only if the pollutant stays confined within a 

country's borders. In both cases, the matrix is symmetric with all off diagonal elements 

equal to zero and all diagonal elements equal to one. 

In the case of a pure public bad (matrices c and d) which has the properties of both 

nonrivahy and nonexcludability, the spatial weight matrices look quite different. Nation A 

emits ten units of pollution affecting both itself and nation B, and nation B emits five units 

which also affects nation A and itself Both nations therefore have to cope with 15 (10+5) 

units of damage fi'om the pollution. Notice that the column sums of matrix c are greater 

than the emission levels of each country. Converting the "depositions" into a percentage 

of the total emissions gives matrix d. All elements of this matrix are equal to one (i.e. 

100%). Examples of pollutants with pure public bad properties include CFCs and carbon 

dioxide. Both are gases that easily dissipate in the atmosphere and cause world-wide 

rather than localized problems. 

In the case of a pollutant that is an impure public bad (i.e. one that is rival and non­

excludable), spatial weight matrices similar to e and f or g and h resuh. In the first case, 

the dispersion of the pollutant is symmetric (but this symmetry is only visible in matrix f). 

Eight of the ten units (80%) emitted by nation A fall in nation A, while the two remainmg 

units (20%) fall in nation B. Of B's five units of pollution, one unit lands on A (20% of 

B's total emissions) and four units land on B (80%). Notice that matrix f, the spatial 
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weight matrix represented in percentage terms, is symmetric with 80% along the diagonals 

and 20% in the off diagonals. 

If one nation is downwind of another, a transboundary pollutant with the 

properties of an impure public bad will generate a non-symmetric spatial weight matrix (in 

percentage terms). This case is illustrated in matrices g and h. Here six units (60%) of 

nation A's emissions falls on itself while four units (40%) falls on B. However all five 

units (100%) of B's emissions lands on its own soil. Notice that in both cases of an impure 

public bad, the column sums of matrices e and g are equal to the total emissions and that 

the column sums of f and h add up to 100%. Sulilir dioxide and nitrogen oxides are 

transboundary pollutants that fall into the category of impure public goods. 

The spatial weight matrices (in percentage terms) for sulfur dioxide and nitrogen 

oxides both show a strong diagonal component indicating that much of a nation's 

pollution lands on its own soil. However, much less of a country's emissions of nitrogen 

oxides lands on its own soil than does its sulfiir emissions. Furthermore, nitrogen oxides 

generally difiiise faster than sulfiir emissions so that countries receive a smaller percentage 

of NOx depositions fi'om their neighbors compared with sulfijr depositions. 

Since other nations will benefit when a nation reduces its own emissions of a 

transboundary air pollutant, the marginal social benefit of reducing ah* pollution is greater 

than the marginal private cost of controlling it, and therefore it is expected that the optimal 

amount of pollution (or pollution control) will not be chosen. That is, the cooperative 

solution which equates marginal social benefit with marginal social cost will not occur. 
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Instead nations are expected to equate their marginal private cost of reducing pollution to 

their marginal private benefits. The result is an underprovision of the public good 

(emission reductions) and an overprovision of the public bad (air pollution). 

Spatial Weights, Payoffs, and Dominant Strategies 

It is possible to represent the choice of pollution control as a game theory problem. 

Suppose there are two nations, again I will use A and B, that can choose to cooperate or 

defect. By cooperating, a nation chooses its level of emission reductions by equating its 

marginal costs to both its own marginal benefits and the marginal benefits that other 

nations derive fi'om its emission reductions. A nation defects when it chooses the level of 

reductions based only on the costs and benefits to itself It should be emphasized that 

defection does NOT mean that a nation fails to limit its pollution but rather that it only 

limits pollution up to the point where its own marginal benefits are equal to its own 

marginal costs. 

In some cases, if the transboundary air pollutant is an impure public good, the 

problem of whether to cooperate or defect can be represented as a Prisoner's Dilemma, 

such as that of matrix a in Figure 3.4. Suppose that both nations are identical and the 

spatial matrix (in percentage terms) is symmetric with all elements equal to 50%. 

Furthermore, suppose that when each nation defects it chooses to reduce its emissions by 

one unit at a private cost of five but which gives ten in total world benefits. Each nation 

then gets a private benefit of five (50% of ten) and gives five in spillover benefits to the 
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Nation B Nation B 

CD CD 

C 7 , 7  3 , 9  C 7 , 7  5.4. 6.6 
Nation Nation 

A 4c A 
D 9 . 3  5 . 5  D 6.6, 5.4 5 , 5  

a. Prisoner's Dilemma b. Fully Privileged 

Figure 3.4. More Coordination Games 

other nation. If both nations choose to defect, then the payoflTfor each nation is five (five 

in private benefits minus five in costs plus five in spillover benefits fi^om the other nation). 

Next, suppose that when the cooperative solution is calculated, two units of 

emission reductions are chosen. This time the private cost to reduce emissions by two 

units is assumed to be 11, reflecting an increasing marginal cost, and total world benefits 

provided are 18, reflecting decreasing marginal benefits. If both nations choose to 

cooperate then the payoff to both nations is seven. Each nation gets nine in private 

benefits (50% of 18) at a cost of eleven plus nine in spillover benefits from the other 

nation. 

Finally, suppose that nation A chooses to cooperate and elects to reduce its 

emissions by two units while nation B chooses to defect and reduce its emissions by one 

unit. In this case, the payoff for A is 3, since it receives nine in private benefits (50% of 
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18) minus a private cost of 11 plus spillover benefits of five (50% of 10) fi-om nation B's 

one unit of emission reductions. The payoff for nation B is 9, since it receives five in 

private benefits (50% of 10) at a private cost of 5 plus spillover benefits of nine (50% of 

18) fi-om nation A's two units of emission reductions. The reverse holds if A defects and 

B cooperates; the result is a payoff of nine for A and three for B. 

Since there is no enforcement mechanism to insure that nations carry out their 

agreements, this situation corresponds to that of transboundary air pollution, where no 

world government is able to enforce international treaties. In addition, nations are 

expected to make their choices simuhaneously and without communicating with other 

nations. Therefore a nation can assume that its decision about whether to cooperate or 

defect will have no influence on the decision of another nation (i.e. each nation has a zero-

conjecture reaction fiinction). 

If both countries cooperate by selecting the globally optimal level of pollution, then 

they are better off (with payoffs of seven for each) than if they both decide to act selfishly 

(in which case they each get five). However, both countries have strong incentives to 

defect. If A defects while B cooperates, A is much better off than if it had cooperated, 

and the same holds true for B. The result is that the dominant strategy for both nations is 

to defect. There are, of course, a.large number of alternative factors that influence the 

'' Notice that diminishing marginal benefits occur for both the cooperator and defector in this case as 
well. When both nations cooperate each imit of emission reductions is worth nine (18 x 2 in world 
benefits divided by 4 units of total emission reductions). When one nation cooperates and one defects 
each unit of emission reductions is worth 9.333 ((18 + 10) / 3). And if both nations cooperate, each unit 
of emission reductions is worth ten (10 x 2 / 2). Because each element of the spatial weight matrix is 0.5, 
each nation shares the world benefits fi'om emission reductions equally, whether this is four (full 
cooperation), three (one cooperates and one defects) or two (full defection). 
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payoff structure and hence the outcome of international treaty formation, among these are; 

the size of the group, the public supply technology, and transactions costs. Each of these 

will be explored in the dissertation. 

In the above case, the provision of the public good abides by a Nash equilibrium 

and both nations choose to defect. Non-Nash equilibria, when players consider how 

their choices will affect the other player's choices, are also possible, but these are much 

more complicated and involve non-zero conjectures about the reactions of others (Comes 

and Sandler, 1984b, 1996). 

While defection is the individually rational outcome of playing the Prisoner's 

Dilemma a finite number of times, Barrett (1991) has suggested that if the Prisoner's 

Dilemma is played repeatedly (a supergame), cooperation may develop because defection 

can be punished by retaliation in the next and subsequent plays of the game (assuming that 

neither player knows when the game will end). Barrett believes that it is crucial that 

international environmental agreements must be self-enforcing. 

When a minimal amount of cooperation is required to achieve a positive payoff or, 

in the following case, where there is a change in the spatial weight matrix, the dominant 

strategy may no longer be that of defection. Let us keep the same example as in matrix a 

of Figure 3.4 but change the spatial weights. Suppose that 80% of a country's emissions 

land on itself with the other 20% landing on its neighbor. 

A Nash equilibrium occurs when, given the other nation's best choice, neither nation has any incentive 
to change its strategy unilaterally. 
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In a fully privileged game, the payoffs for fiill cooperation and fiill defection do not 

change but the payoffs for one nation defecting and the other nation cooperating do 

change (see matrix b in Figure 3.4). In the case of fiill cooperation, each nation receives 

14.4 (18 X 0.8) in private benefits at a cost of 11 + spillover benefits of 3.6. (18 x 0.2), for 

a total of 7 each. For fiill defection, each nation receives 8 (10 x 0.8) in private benefits at 

a cost of 5 and a spillover benefit of 2 (10 x 0.2), giving a total payoff of 5 for each. 

Finally in the case where one nation cooperates and the other defects, the defector gets 6.6 

(eight in private benefits (80% of 10) at a cost of five plus spillover benefits of 3.6 (20% 

of 18) fi-om the two units of emission reductions fi'om the cooperator). The cooperator 

gets 5.4 (a private benefit of 14.4 (80% of 18) minus a private cost of 11 plus spillover 

benefits of two (20% of 10) fi-om the one unit of emission reductions of the defector) 

Notice that the payoff for the defector in this case is less than the payoff for fiill 

cooperation. 

Matrix b thus has a single dominant strategy (C, C) which is also a Nash 

equilibrium. Rational players will always choose the cooperative strategy and will never 

deviate fi-om it. Even if one or both players deviate from the cooperative strategy, the 

structure of the payoffs will lead them back to cooperating. 

Again, this simplified method implicitly takes into account the decreasing marginal benefits of emission 
reductions. The cooperator gets benefits from 1.8 units of emission reductions (2 x 0.8 + 1 x 0.2) and the 
defeaor gets benefits firom 1.2 units of emission reductions (1 x 0.8 + 2 x 0.2). 80% of the cooperator's 
(defector's) benefit is based on the fiill cooperation (defection) benefits—so the actual marginal benefit is 
imderestimated (overestimated)— while 20% is based on full defection (cooperation)-so the actual 
marginal benefit is an overestimate (underestiniate). Thus, it turns out that the coirea result is achieved, 
i.e. the marginal benefit of emission reductions is lower for the cooperator than for the defector but not as 
low as the marginal benefit when both countries cooperate. 
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Likewise, if a treaty can be designed so that the costs of pulling out exceed the 

benefits gained, the result is also an assurance game and the treaty is self-enforcing. 

However, a fiiUy privileged game would require no treaty at all since once the payoflf 

matrix is known, players will automatically choose the cooperative strategy and do not 

need any assurance about the actions of the other players. 

Nevertheless, most transboundary pollution problems involving impure public 

goods will be more likely to result in payoff matrices that resemble matrix a rather than 

matrix b. If this were not the case, then there would not be so much debate over 

transboundary pollution control treaties—either there would be no need for treaties, or the 

treaties would be something of a formality and signed with little argument. 

Applications to the Transnational Commons 

Stratospheric Ozone Depletion 

After considerable scientific debate and investigation, a consensus has formed that 

CFCs emissions produce a chemical reaction in the stratosphere that thins the ozone shield 

that protects all living organisms fi^om harmful ultraviolet radiation (Morrisette et al., 

1990). In 1985, the British Antarctic Survey presented evidence that a disturbing 40 

percent drop (fi-om 1964 levels) in the springtime atmospheric levels of ozone took place 

over Halley Bay, Antarctica, during the 1977-1984 period. Ozone depletion is nonrival 

because one nation's increased exposure to enhanced ultraviolet radiation does not lessen 

the risks to any other nation. Even though thinning initially takes place over the polar 
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regions during the winter, the reduced density of stratospheric ozone is more or less 

evenly shared worldwide as mixing takes place in the upper atmosphere. Since nations 

cannot escape the increased ultraviolet exposure, the detrimental effects of ozone thiiming 

are nonexcludable on a global scale. The ozone shield is a global commons and its 

depletion has the properties of a global pure public bad. Each nation's release of CFCs 

adds to the depletion in an additive maimer with identical marginal impacts, so that a 

summation technology is relevant. 

Just prior to the discovery of the Antarctic ozone hole, nations negotiated the 

Convention for the Protection of the Ozone Layer" in Vienna on 22 March 1985. This 

precursor to the Montreal Protocol mandated scientific evaluation of the ozone shield and 

its possible thinning from CFCs. The Vienna Convention was a symbolic breakthrough 

that helped pave the way to the subsequent Montreal Protocol of 16 September 1987 that 

actually established limits for the emission of CFCs and halons (see Murdoch and Sandler, 

1997b and the United Nations Environment Programme (UNEP) 1991 on these limits). 

This protocol entered into force on 1 January 1989 following the required signatures of 

eleven or more ratifiers, a number arbitrarily mandated by the treaty. Initial ratifiers 

included Canada, Denmark, Egypt, Finland, France, West Germany, Ireland, Italy, Japan, 

Malta, Mexico, the Netherlands, New Zealand, Norway, Spain, Sweden, the U.K., the 

See United Nations Environment Progamme (1991) for the text of the Vienna Convention and other 
multilateral treaties discussed in this paper. 

This number did not follow from game-theoretic or other considerations and is not viewed as a 
minimal-sized coalition. 
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U.S., and the U.S.S.R. Many other nations signed subsequently including Australia, 

China, East Germany, and South A£rica. 

But why did nations accomplish a coordinated equilibrium in the case of ozone 

depletion even though a summation technology is present? How were the payoffs 

conducive to this treaty? To address these questions, I first examine CFCs emission 

patterns as indicated in the left-hand half of Table 3.2, where the twelve largest CFCs 

emitters in 1989 are indicated. Emitters' rank, emission levels in thousands of metric tons, 

and percent of world total are given. The top three emitters account for half of the 

world's emissions, while the top twelve account for just over 78 percent. Thus, the 

minimal-sized group of ratifiers can be quite small. From my analysis of coordination 

games, I know that a small required number of ratifiers is conducive to treaty formation. 

But eleven may still be restrictive unless the adherence probability for the rest of the group 

is correlated or very small, and this requires, in part, large payoffs fi-om coordination. 

Correlated probabilities were probably achieved through the leadership actions of the 

U.S., whose net benefits from curbing CFCs use were large. Significant payoffs fi-om 

multilateral actions have, indeed, been documented for the largest CFCs polluters by the 

U.S. Environmental Protection Agency (EPA). The EPA (1987a, 1987b) estimated that 

the implementation of the Montreal Protocol could save the U.S. $6.4 trillion by 2075 in 

reduced costs associated with skin cancers. The long-nm costs fi'om curbing CFCs uses, 

as mandated by the 1987 protocol, was estimated by the EPA to be between $20 and $40 

See Poterba (1993) on other &ctors that may have led to the signing of the Montreal Protocol. 
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Table 3.2. Major Polluters Of CFCs And Industrial-Based CO2:1989 

CFCs* Industrial-Based CO2'' 

CFC Percent CO2 Percent 
Emissions of Emissions ofWorld 

Country Rank (000 Metric World Country Rank (000 Metric Total 
Tons) Total Tons) 

U.S. 1 130 22.4 U.S. 1 4,869,005 22.3 
Japan 2 95 16.4 U.S.SJL 2 3,804,001 17.4 
U.S.S.R. 3 67 11.6 China 3 2,388,613 10.9 
Germany'̂  4 34 5.7 Japan 4 1,040,554 4.8 
U.K. 5 25 4.3 India 5 651,936 3.0 
Italy 6 25 4.3 W. Germany 6 641,398 2.9 
France 7 24 4.1 UJC. 7 568,451 2.6 
Spain 8 17 2.9 Canada 8 455,530 2.1 
China 9 12 2.1 Poland 9 440,929 2.0 
Canada 10 11 1.9 Italy 10 389,747 1.8 
Australia 11 8 1.4 France 11 357,163 1.6 
S. Africa 12 7 1.2 Mexico 12 319,702 1.5 

Total 455 78.4 Total 15,927,029 72.9 
World 580 100.0 World 21,863,088 100.0 

'Source: World Resources Institute (1992, Table 24.2, pp. 348-49). 
^Source: World Resources Institute (1992, Table 24.1, pp. 346-47). 
^Includes West and East Germany. 
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billion throughout the 1989-2075 period. Expected payoffs from national coordination 

efforts were bolstered by scientific certainty, the availability of CFCs substitutes, and the 

concern expressed by many opinion leaders and the public in some of the major emitting 

nations. 

Treaty negotiations limited transaction costs by mandating contributions to a 

multilateral fiind only after ratification.'^ This negotiation tactic was also supportive of 

ratification. A comparison of the initial ratifiers and the major emitters indicates that most 

of these emitters were on board at the outset of the treaty or came on board shortly 

thereafter. 

Although the analysis of coordination games lends insights as to some of the 

factors behind ratification of the Montreal Protocol, it does not identify whether fiilly 

cooperative gains have been achieved. Recall that when continuous choices are allowed, 

coordination games have multiple matching-behavior equilibria. Elsewhere, Murdoch and 

Sandler (1997b) demonstrate that the initial requirements of the protocol as well as the 

actions taken by countries to curb CFCs emissions in 1989 are in keeping with a 

noncooperative Nash equilibrium. 

Global Warming 

Global warming stems from a greenhouse effect as trapped gases in the earth's 

atmosphere let sunlight through but absorb and trap infrared radiation, thereby raising the 

The multilateral fund supports the infrastructure needed for the treaty and provides scientific assistance 
to those needing aid. 
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mean temperature. Gases with this property are called greenhouse gases (GHGs) and 

include carbon dioxide (CO2), CFCs, methane, ozone, and nitrous oxide. Carbon dioxide 

is a byproduct of the burning of fossil fuels. Tropical deforestation can also add large 

amounts of carbon to the atmosphere as cleared trees are burned or decomposed. 

Methane can come from mining and agricultural activities, whereas nitrous oxide is partly 

derived from the use of fertilizers. 

Global warming, like ozone depletion, yields negative outputs that are nonrival 

among nations and nonexcludable, thus implying a summation technology whereby GHGs 

accumulate in an additive fashion. But if these two global commons problems share the 

same technology of aggregation, then why have treaty ratifications been so different? To 

date, nations have not come near to agreeing to limit GHGs emissions. The first major 

difference between global warming and ozone depletion involves the number of countries 

that would have to coordinate action for the presence of free riders to not undo the 

cooperator' restraints. In the right-hand half of Table 3.2,1 list the major industrial-based 

emitters of CO2. Emissions are again concentrated: the top three account for 50 percent, 

while the top twelve account for about 73 percent. But this is not the whole story. In 

Table 3.3, the major polluters of CO2 from tropical deforestation are indicated. The top 

seventeen polluters account for the accumulation of 5,260,000 thousand metric tons of 

carbon emissions, or about 20 percent of the total from industry and land-use changes. 

Only India and Mexico are in both Table 3.2 and 3.3; hence, I have identified 27 

significant emitters of carbon and have not included sources of methane or nitrous oxide. 
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Table 3.3. Major Polluters Of CO2 From Land-Use Changes (Tropical 
Deforestation) 

Equivalent C02 Emissions Percent of 
Country Rank (000 metric tons) World Total 

Brazil 1 950,000 14.8 
Indonesia 2 870,000 13.6 
Columbia 3 420,000 6.6 
Myanmar 4 380,000 5.9 
Cote dlvoire 5 350,000 5.5 
Thailand 6 290,000 4.5 
Malaysia 7 280,000 4.4 
Nigeria 8 270,000 4.2 
Lao People's Dem Rep. 9 240,000 3.8 
Mexico 10 200,000 3.1 
Philippines 11 190,000 3.0 
Ecuador 12 160,000 2.5 
\̂ etnam 13 150,000 2.3 
Peru 14 140,000 2.2 
Zaire 15 130,000 2.0 
Madagascar 16 120,000 1.9 
India 16 120,000 1.9 

Total 5,260,000 82.2 
World 6,400,000 lOO.O 

Source: World Resources Institute (1992, Table 24.2, pp. 348-49). 
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The latter pollutants are associated with some agrarian countries not in either table. To 

varying degrees, every country adds to global wanning, whereas many countries do not 

add to ozone depletion (World Resources Institute 1992, Tables 24.1-24.2). 

Obviously, the large numbers required for coordination in global warming works against 

treaty formation. It also raises transaction costs. 

A second inhibiting factor concerns the small expected gains from curbing global 

warming (see, e.g., Nordhaus, 1991). These gains are small owing, m part, to the 

uncertain impact of global warming on climate and rainfall. Much still needs to be learned 

in terms of carbon accumulation and its environmental impact. As a consequence, nations 

apply large discount factors to potential costs associated with global warming. This has 

been especially true for the U.S., which ̂  not assumed a leadership role for this problem. 

Without leadership by the major players, adherence probabilities are independent and my 

pessimistic analysis applies. 

A third factor is the small values associated with acting prior to achieving a 

minimal-sized group (i.e., the Bs are small). Self-imposed curtailment of carbon emissions 

may yield little net gain for even a significant-sized coalition, such as the European 

Community. 

Acid Rain 

Acid rain stems from the emission of sulfiir dioxide (SO2), sulfates, and nitrogen 

oxides (NOx), which when released into the atmosphere can combine with water vapor 

and tropospheric ozone to form sulfliric and nitric acids. As the atmosphere performs 
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self-cleansing process, acid precipitation results and threatens forest resources, lakes, 

rivers, coastal waters, and manmade structures. Suliur emissions arise from the burning of 

fossil fuels, while nitrogen oxides derive from automobile emissions, fertilizers, and other 

sources. A primary source of sulfur emissions is from the generation of electric power. 

Since sulfur dioxide, sulfates, and nitrogen oxides emissions can travel over a thousand 

kilometers and remain aloft for up to eight days, acid rain poses a commons problem with 

transnational regional implications. But, unlike ozone and global warming, acid rain is a 

more localized problem with significant country-specific aspects. 

An appropriate technology of public supply aggregation is the weighted sum, 

where weights indicate the proportion of sulfur emissions in country j deposited on 

country i's soil. Each country's deposition of, say, sulfur is set equal to a weighted sum of 

regional sulfur emissions by country. More formally, sulfur deposition in country i (GO 

equals 

Gi=iaijEij i = l,. . . .n (3.12) 
j=i 

where tty is the fraction of country j's emissions (E,) falling on country i's soil.'® For the 

regional group as a whole, I have 

G = AE, (3.13) 

Another measure of Oij can also be constructed. Depositions (emissions that land within a certain 
region) may be used as the divisor instead of emissions. In this case ocjj would be the fraction of country 
j's regional depositions that fall on country i's soil. This measure of ocij is always greater than the the first 
measure of Oij because regional depositions from a country are less than that country's total emissions. 
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in which G is an n x 1 vector (Gu...,Gn) of depositions, A is the n x n transport matrix of 

OijS, and E is an n x 1 vector (Ei,...,En) of emissions. Similarly, each nation's reduction in 

depositions equals a weighted sum of regional emission cutbacks.'^ In the case of sulfur 

and NOx, these weights have been determined empirically through monitoring stations, 

computer modeling, and statistical analysis for Europe (Eliassen and Saltbones 1983; 

Sandnes 1993). 

The transport matrix of oxidized sulfur for 1990 is indicated for 27 European 

countries in Table 3.4, where the entries are the cxjjs and are in percentage terms, so that 

for, say, the Soviet Union (SUN), 83.6 percent of its own sulfiir pollutants (that fall within 

the EMEP study region) fall on its own territory, and 16.4 percent land elsewhere in the 

study region.^" 1.8 percent drops on Finland (FIN). Neither the columns nor the rows sum 

to 100% because some emissions land outside the 27 European countries and some 

depositions are from areas outside Europe. The Soviet Union is also affected by Finland 

(FIN) and Poland (POL), because 27.3 percent of Finland's pollution descends on the 

Soviet Union, while 12.6% of East Germany's sulfiir emissions fall on the Soviet Union, 

^^th a few exceptions, a country receives the lion's share of its own pollution. The larger 

is the coimtiy, the larger is this share. Nearness also matters, because countries pollute 

downwind neighbors. These first two facts pave the way for bilateral and trilateral 

treaties. Transport matrices are not symmetric, since location, wind direction, and other 

For a formal model, see MSler (1989) and Murdoch and Sandler (1997a). 
 ̂The Soviet Union gets only about 30% of its own total emissions (using the first measure) but it gets 

over 90% of its own emissions of the total that Mis within the 27 countries (the second measure). 
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Table 3.4. Oxidized Sulfur Transport Matrix For 1990 (In Percentage Terms) 

Emitters; 

ALB AUT BEL BGR CSK DNK FIN FRA DDR DEU GRC HUN IRL ITA LUX NLD NOR POL PRT ROM ESP SWE CHE TUR SUN GBR YUO 

ALB 34.5 0.0 0.0 0.7 O.I 0.0 0.0 0.0 0.0 0.0 0.8 0.3 0.0 0.5 0.0 0.0 0.0 0.1 0.0 0.2 0.0 0,0 0.0 0,1 0,0 0.0 0,7 

AUT 0.0 40.4 1.3 O.I 2.9 0.3 0.0 1.7 1.6 2.6 0.0 1.5 0.2 2.8 2.9 0.8 0.0 1.0 0.0 0.2 0.2 0.2 6.6 0,0 0,1 0.3 1,8 

BEL 0.0 0.0 22.2 0.0 0.1 0.1 0.0 2.4 0.2 1.4 0.0 0.0 0.3 0.0 2.9 2.7 0.0 0.1 0.0 0.0 0.1 0.0 0.0 0,0 0,0 0.9 0.0 

BGR 3.4 0.7 0.1 51.3 0.7 0.1 0.0 O.I 0.3 0.2 2.7 1.9 0.0 0.4 0.0 0.1 0.0 0.3 0.0 6.5 0.0 0,0 0.0 0.8 0.3 0.1 2.7 

CSK 0.0 8.2 1.7 0.3 36.2 0.7 0.1 1.4 6.6 3.4 0.1 7.8 0.3 0.7 2.9 1.4 0.0 4.0 0.0 0.9 0.1 0.3 1.7 0.0 0,1 0.5 1.9 

DNK 0.0 0.0 0.7 0.0 0.2 13.8 O.I 0.4 0.5 0.9 0.0 0.0 0.5 0.0 0.0 1.0 0.6 0.2 0.0 0.0 0.0 0.8 0.0 0.0 0,0 0.9 0.0 

FIN 0.0 0.4 0.4 0.0 0.4 1.9 40.2 0.2 0.5 0.4 0.0 0.2 0.3 0.1 0.0 0.5 2.3 0.7 0.0 O.I 0.0 6.2 0.0 0.0 1,8 0.4 O.I 

FRA 0.0 I.l 10.0 0.0 1.2 0.7 0.0 40.5 1.7 4.7 0.0 0.4 1.9 3.0 14,5 5.2 0.0 0.7 1.7 0.1 5.4 0.2 7.7 0.0 0.1 2.6 0.6 

DDR 0.0 0.7 3.2 0.0 5.3 2.0 0.0 1.7 32.6 6.5 0.0 0.2 0.6 0.2 4,3 3.3 0.6 1.2 0.0 0.1 0.1 0.3 0.6 0,0 0,1 1.1 0.1 

DEU 0.0 4.3 13.6 0.1 3.6 2.5 O.I 9.2 6.1 37.4 0.0 0.4 1.8 1.2 21,7 12.2 0.6 1.4 0.2 0.1 0.6 0.5 11.6 0,0 0,1 3.4 0.3 

GRC 7.6 0.4 O.I 8.5 0.3 0.0 0.0 O.l O.l O.l 30.5 0.7 0.0 0.6 0,0 0.1 0.0 0.2 0.0 1.6 0.1 0.0 0.0 2,0 0,2 0.0 I.l 

HUN 0.0 6.1 0.4 0.4 3.0 0.1 0.0 0.4 1.0 0.7 0.2 34.1 0.0 1.2 0.0 0.3 0.0 1.1 0.0 2.0 0.1 0.0 0.6 0,0 0,1 0.1 5.2 

IRL 0.0 0.0 0.3 0.0 0.0 0.0 0.0 0.2 O.l 0.1 0.0 0.0 28.3 0.0 0.0 0.2 0.0 0.0 0.2 0.0 0.0 0.0 0.0 0,0 0,0 0.6 0.0 

ITA 1.7 5.4 1.1 0.6 1.8 0.1 0.0 3.4 1.2 1.5 1.1 2.3 0.2 41.6 1.4 0.8 0.0 0.9 0.7 0.5 1.1 0.2 12.2 0,1 0,1 0.3 5.0 

LUX 0.0 0.0 0.2 0.0 0.0 0.0 0.0 0.2 0.0 0.1 0.0 0.0 0.0 0.0 18.8 0.0 0.0 0.0 0.0 0.0 0,0 0.0 0.0 0,0 0,0 0.0 0.0 

NLD 0.0 0.0 5.6 0.0 0.1 O.l 0.0 1.4 0.3 2.8 0.0 0.0 0.6 0.0 1.4 17.4 0.0 0.1 0.0 0.0 0.1 0.0 0,0 0,0 0.0 1.7 0.0 

NOR 0.0 0.0 1.3 0.0 0.4 3.8 1.4 0.7 0.7 1.0 0.0 0.1 1.6 0.0 0.0 1.8 34.3 0.4 0.2 0.1 0.2 3.6 0,0 0,0 0.4 2.5 O.l 

POL 0.0 4.3 3.8 0.4 13.2 4.9 0.6 2.1 16.6 6.5 O.I 5.1 I.O 0.6 4.3 4.1 1.1 44.5 0.0 1.3 0.2 2.1 1,1 0,0 0.8 1.8 1.8 

PRT 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.2 0.0 0.1 0.0 0.0 0.0 0.0 0.0 O.I 0.0 0.0 37.6 0.0 1.9 0.0 0,0 0,0 0.0 O.l 0.0 

ROM 2.5 2.5 0.4 5.5 3.0 0.4 0.2 0.4 1.3 0.7 0.9 9.7 0.2 0.9 0.0 0.5 0.0 2.2 0.0 52.0 0.1 0.2 0.0 0,5 1.1 0.2 7.1 

ESP 0.0 0.0 0.9 0.0 0.1 0.1 0.0 2.4 0.3 0.3 0.0 O.I 0.5 0.5 1.4 0.7 0.0 0.1 18.6 0.0 48.3 0.0 0.6 0,0 0.0 0.6 0.2 

SWE 0.0 0.4 1.5 0.0 1.0 11.5 6.5 0.8 1.8 2.0 0.0 0.3 1.0 0.0 1.4 2.0 12.6 1.5 0.0 0.2 0.1 37.3 0.0 0,0 0.7 2.0 0.1 

CHE 0.0 0.7 0.6 0.0 0.3 0.0 0.0 2.2 0.3 0.9 0.0 0.1 0,2 2.3 1.4 0.5 0.0 0.2 0.2 0.0 0.3 0.0 46,4 0,0 0.0 0.2 0.2 

TUR 0.8 0.4 0.1 3.8 0.4 0.1 0.0 0.1 0.2 0.2 5.3 0.9 0.0 0.2 0.0 0.1 0.0 0.5 0.0 2.0 0.0 0.0 0,0 59,6 1.1 0.1 0.5 

SUN 1.7 7.1 6.3 5.8 14.1 13.0 27.3 3.4 12.6 8.2 2.3 15.6 2.2 1.4 5.8 6.9 6.9 27.0 0.2 18.5 0.4 I5.I 1.7 8.2 83.6 4.0 5.9 

GBR 0.0 0.0 l.S 0.0 0.2 0.5 0.0 1.1 0.3 0.7 0.0 0.0 11.3 0.0 0.0 1.8 0.6 0.1 0.2 0.0 0,3 0.2 0.0 0,0 0.0 33,1 0.0 

YUG 11.8 8.2 0.7 6.3 2.8 0.3 0.1 1.0 1.4 I.l 1.5 9.2 0.2 6.3 1.4 0.5 0.0 1.4 0.2 3.3 0,3 0.2 1.7 0,3 0.2 0,2 50,4 

Source: Sandnes (1993) and my calculalion of the a^s based on the sulfur budget. 

Abbreviations: ALB for Albania, AUT for Austria, BEL for Belgium, BGR for Bulgaria, CSK for Czechoslovakia, DNK for Denmark, FIN for Finland, FRA for France, DDR for East Germany, DEL) 

for West Germany, GRC for Greece, HUN for Hungary, IRL for Ireland, ITA for Italy, LUX for Luxembourg, NLD for Netherlands, NOR for Norway, POL for Poland, PRT for Portugal, ROM foray, 

Romania, ESP for Spain, SWE for Sweden. CHE for Switzerland, TUR for Turkey, SUN for Soviet Union, GBR for the U.K., and YUO for Yugoslavia. 
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factors are crucial. In contrast, the transport matrix for a summation technology (e.g., 

ozone depletion) is symmetric and consists of all Is, as each nation receives the total 

pollution from all others. This diflFerence in transport matrices causes vastly different 

opportunities for free riding and country-specific effects when summation and weighted 

sum technologies are considered. 

The two kinds of commons problems are really quite distinct; general prescriptions 

have little validity. Table 3.5 indicates sulfur emissions in thousands of metric tons of SO2 

for the greatest emitters in Europe during 1980, 1985, and 1989. In 1989, the top two 

polluters accounted for just under 40 percent of European and Soviet emissions, whereas 

the top nine polluters accounted for 86.5 percent of these emissions. Apparently, modest 

minimal-sized groups are needed for a treaty reducing such emissions. A second feature 

of the table is the decrease in emissions displayed by all but Spain between 1980 and 1989. 

The game analysis of weighted sum technologies indicates that a coordination 

equilibrium may be difficult to achieve owing to modest gains derived from such an 

equilibrium. This does not mean that nations will not reduce emissions, because the Nash 

independent-adjustment equilibrium can be consistent with emission cutbacks. In the case 

of the ex-Soviet Union and the U.S., a large percentage of their sulfur deposition comes 

from their own emissions (Eliassen and Saltbones, 1983); hence, there is a motive for 

cutbacks even without a transnational treaty. Moreover, large downwind countries are 

motivated to play a leadership role. 
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Table 3.5. Sulfur Emissions (000 Metric Tons Of SO2): 1980,1985,1989 

1989 Percent of 
Country 1980 1985 1989 Europe &U.S.S.R. 

U.S.S.R. 12,800 11,100 9,318 23.2 
Germany* 8,200 7,400 6,710 16.7 
Poland 4,100 4,300 3,910 9.7 
U.K. 4,848 3,676 3,552 8.9 
Spain 3,250 3,250 3,250 8.1 
Czechoslovakia 3,100 3,150 2,800 7.0 
Italy 3,800 2,504 2,410 6.0 
France 3,510 1,846 1,520 3.8 
Hungary 1,634 1,420 1,218 3.0 

Total of Nine — 34,688 86.5 
Europe'' & U.S.S.R. — — 40,104 100.0 

U.S. 23,400 21,100 20,700"= 

Source: World Resources Institute (1992, Table 24.5, p. 24). 
* Includes West and East Germany. 

Other European countries included Albania, Austria, Belgium, Bulgaria, Denmark, Finland, Greece, 
Iceland, Ireland, Luxembourg, the Netherlands, Norway, Portugal, Romania, Sweden, Switzerland, 
and Yugoslavia. 
" Suliiir emissions for 1988. 
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The 1979 Convention on the Long-Range Transmission of Air Pollutants 

(henceforth called LRTAP) in Europe was the first formal agreement on acid-rain-causing 

pollutants. This treaty mandated scientific investigation and evaluation of the problem by 

establishing a system of monitoring stations throughout Europe (UNEP, 1991). It is these 

stations' data that are used to derive the weights for determining transnational deposition 

of sulfiir. The LRTAP treaty was ratified on 16 March 1983 after the required sixteen 

nations signed. Given the distribution of pollution, sixteen appears to be a restrictive 

number of ratifiers; bilateral and trilateral treaties would have been appropriate for some 

countries. The most noteworthy agreement on sulfiir emissions is the Helsinki Protocol (8 

July 1985) to the LRTAP Convention. This protocol committed nations in North America 

and Europe to reduce sulfiir emissions by at least 30 percent, based on 1980 levels, as 

soon as possible or by 1993 (UNEP, 1991). 

Murdoch and Sandler (1997a) constructed a weighted sum model using an 

empirically determined transport matrix of weights for Europe. Their analysis indicated 

that reductions in sulfiir emissions between 1980 and 1985, mandated by the Helsinki 

Protocol, was consistent with a noncooperative Nash equilibrium. It is noteworthy that 

these reductions were, for many countries, attained prior to the treaty being ratified. By 

the end of 1989, the European countries in Table 3.5 had reduced sulfiir emissions on 

average by 22.8 percent fi-om their 1980 baseline. This suggests that the treaty did not 

accomplish much in terras of a true cooperative equilibrium, a result consistent with the 



www.manaraa.com

90 

game theory analysis. Nations reduced sulfur emissions, because it was in their self-

interest to do so. The treaty was written to codify these self-induced reductions. 

Tropical Deforestation 

Tropical forests house over half of the world species of plants and animals, so that 

the clearing of these forests would have a significant impact on the earth's genetic 

diversity. In addition, these forests sequester significant amounts of carbon, which could, 

if released, accelerate global warming. Tropical forests also provide a bequest value that 

the current generation worldwide derives fi-om passing an asset on to a future generation. 

Thus, tropical forests yield global public goods. But these forests also give rise to 

localized public and private outputs to the host nation and their neighbors. Private 

outputs include timber and nontimber products. For host nations and neighbor states, rain 

forests provide local public goods in terms of watersheds, erosion control, localized 

climate effects, nutrient recycling, and bequest value. In short, the preservation of tropical 

forests produces multiple outputs; hence, joint products are present (Sandler, 1993). 

From a coordination equilibrium perspective, two opposing forces are at work. 

On the negative side, the large number of participants required for a minimal-sized 

coalition restricts the achievement of a treaty. Table 3.3 indicates that at least seventeen 

nations are destroying their tropical forests in a significant manner. For global benefits, 

many developed countries that place a high value on the environment will have to be 

included in any agreement to support preservation if free riders are not to prosper. These 

large numbers of participants will inhibit the formation of a meaningful treaty. On the 
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positive side, the presence of local benefits keeps the gains fi'om individual action large in 

the absence of a My coordinated equilibriiun (i.e., the Bs in matrix b in Figure 3.1). 

These large gains limit the adherence probability and, thus, support treaty formation. 

To date, there has been no significant agreement on the preservation of tropical 

forests. This is, indeed, unfortunate since about two percent of these forests are being 

cleared annually. At current rates of exploitation, these forests are apt to vanish in 50 

years. The best hope is probably for a limited number of the most prosperous nations to 

strike an agreement with nations like Brazil, Ecuador, and Colombia with some of the 

largest forests. 

Concluding Remarks 

I have attempted to break with tradition by stressing the differences among 

problems of the transnational commons. In particular, problems differ based on the 

technology of public supply that applies. These diverse technologies imply different 

prognoses for coordinating actions among transnational groups. My analysis is tied to the 

theory of coordination games where minimal-sized coalitions are required and players are 

uncertain about their counterparts' intentions. The number of required participants, the 

patterns of payoffs, leadership possibilities, and the underlying technologies were shown to 

be crucial considerations when predicting the outcome of treaty formation. This chapter 

has identified factors behind the successfiil negotiations on stratospheric ozone depletion. 

Unfortunately, these favorable factors do not yet extend to global warming even though 

ozone depletion and global warming abide by a summation technology. In the case of acid 
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rain, my analysis has been supportive of individual actions, but predicted that treaties 

would do little to codify reductions beyond those that nations would attempt anyway due 

to localized benefits fi'om such actions. Finally, I identified factors behind the impasse on 

preserving tropical forests. 
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CHAPTER 4. SNAPSHOTS IN TIME: RESULTS OF A SIMPLE 
SPATIAL ECONOMETRIC MODEL 

Introduction 

I now turn from the general problems facing the construction and implementation 

of transnational commons treaties, to developing, constructing, and testing an empirical 

model that seeks to explain the differences between the international treaties that regulate 

sulfiir and NO* emissions. This chapter consists of five parts. In the first part I develop a 

theoretical model of sulilir and NOx emission reductions that includes voluntaiy and 

nonvoluntary actions. Voluntary action concerns emission cutbacks beyond levels 

mandated in a protocol, whereas nonvoluntary action involves meeting mandated 

cutbacks. In the second part, an empirical model is constructed, derived from the 

theoretical model, that accoimts for the spatial dispersion of emissions within the 

European sample countries. In the third section, the empirical specification is put through 

a number of tests using EMEP data for the 1980-90 period in an effort to refiite the 

theoretical model. In the fourth section, the contrast in the two transboundary pollution 

problems is explained. In the last section, the results of testing the models are used to 

make projections of fixture sulfiir and NO* protocols. 

A casual comparison of European emission data for sulfiir and nitrogen oxides 

throughout the 1980s (Tuovinen et al., 1994; Tables 3.2 - 3.3) shows strikingly different 

patterns in the respective emissions. Most countries have met or exceeded the 30 percent 

mandated sulfiir reductions from 1980 levels by the end of the decade, while some of 
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these same countries were having a difBcult time in reducing NOx emission levels. But 

why are the two responses so different? This chapter attempts to answer this question by 

analyzing the factors behind these two seemingly smiilar, but different, collective action 

problems. An important message that derives from my analysis is to resist the temptation 

to lump together collective action problems even if they involve the same participants, 

because key ingredients—group size, the range of benefit or cost spillovers, and/or 

selective incentives—may differ (Olson, 1965; Sandler, 1992). 

The analysis of the regression results indicates that the theoretical model leads to 

an empirical representation that yields reasonable results for sulfur, but less supportive 

results for NO*. Sulfur emissions appear easier to control than NOx, because a greater 

proportion of a country's emissions falls on its own territory and within the treaty's region. 

Moreover, sulfur pollution sources are more concentrated and include public utilities that 

are easy for a country to control. Strategic behavior, whereby a country limits its cleanup 

efforts as others reduce emissions, characterizes both problems despite the enactment of 

conventions and protocols, but appears stronger for NOx. In the case of sulfur, a greater 

demand for a cleaner environment comes about as income and political freedoms are 

enhanced. For NO*, income has no clear-cut influence, whereas increased political 

freedoms inhibit pollution reductions owing to strategic behavior at the individual polluter 

level. My empirical results are in keeping with Barrett (1994) which demonstrated that 

treaties, containing more than a few participants, are unlikely to achieve much in 
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cooperative gains. For groups the size of the Helsinki or Sofia Protocol, a Nash model of 

behavior is best suited to explain reductions as shown here. 

The theoretical and empirical techniques developed in this chapter can be applied 

to a wide range of public good problems, drawn firom environmental and public 

economics. Its analysis is especially germane for those problems where spillins have a 

spatial dimension — e.g., recreation, police protection, and disease containment. 

Theoretical Model 

What follows is a simple model of voluntary and nonvoluntary emission reductions 

of a pollutant. The underlying model is a Nash subscription model, in which an impure 

public good (emission reduction) is allocated by a set of countries that are emitters and 

recipients of a pollutant (e.g., S or NO*), henceforth, denoted as emissions.^ For modeling 

purposes, each country is represented by a unitary actor whose interests are those of the 

nation's citizens. This representation ignores the collective action problem at the national 

level, but I return to this issue when interpreting my empirical results. 

The i"* nation's strictly increasing, quasi-concave utility function is 

Ui = Ui(yi, aaqi + Q ̂ , E;), (4.1) 

where yi is the i''* nation's consumption of the private numeraire good; qj denotes the i"* 

nation's reduced emissions between a base year and the current year of reference; aa is the 

' On Nash subscription models for impure public goods, see McGuire (1990). For alternative pollution 
scenarios, Nash equilibrium behavior has been investigated by Barrett (1993) and Welsch (1993). These 
earlier subscription models did not include spatial dispersion, because it was not relevant to their 
problems. 
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fraction of the i''* nation's emissions deposited on itself, Q; is the reduction of emission 

spillins for nation i; and Ei is a vector of environmental and political Actors in nation i. 

The term cciiqi indicates the reduced emissions of nation i that are no longer deposited on 

its soil.^ In general, qj can be decomposed into two parts: a voluntary reduction, q*, and 

a mandated reduction, q[. In the case of sulfiir, the Helsinki Protocol mandated targetted 

reductions of 30 percent of 1980 emission levels, so that voluntary reductions can be 

denoted after 1987 by 

ql' = qi - qf = 0.7 x (1980 emission levels) - current emissions. (4.2) 

Emission levels smaller than 70 percent of the 1980 emission level are considered to 

include voluntary reductions. By (4.2), total emission reductions in nation i, based on a 

base year level, equal 

q i = q r  +  q ^  ( 4 . 3 )  

But if q[= 0, all reductions are voluntary. 

Reduced spillins of pollution deposition in nation i, derived from other countries, 

may also be made up of voluntary and nonvoluntary emissions from neighboring countries. 

Suppose that there are n countries in the model. Then these spillins are 

Qi = Sajjqj = i:aij(qj +qT) (4.4) 
j*i j*i 

 ̂Implicitly, we are assuming that reduced depositions are also a good proxy for improved ambient air 
quality. 
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for nation i, where oty is the fraction of nation j's emissions that fells on nation i. In (4.4), 

the index on the summation runs from j = 1 to n but excludes i. These spillins equal the 

summed reductions in transported emissions that are deposited on nation i, but that 

originate from other nations. Total deposition reductions, Q., in nation i  equal qi+ Qi or 

the sum of reductions from domestic and foreign sources. If all of a country's emissions 

falls within the region defined by the model, then each country's emissions must be either 

n 

deposited on itself or on another country within the region, so that Saj- = 1. That is, 
i=l 

column sums of the transport matrix of the OijS must sum to one. This highlights the 

complete divisibility of the pollutant among nations in the case of sulfur and NO* 

depositions. Publicness arises from nonexcludability, not nonrivalry. 11^ instead, say 62 

percent of a nation's emissions is deposited within the region and the remainder is dropped 

on downwind regions or dissipate mto the atmosphere, then the column sums for ay-

equals 0.62. 

Nation i is assumed to face the following linear budget constraint: 

mi = yi + piq;'+Piq^, (4.5) 

where m; is national income, the price of the private good, y;, is unity, and pi is the per-imit 

price of voluntary and nonvolimtary reductions. The model is kept simple—pi does not 

differ between the two classes of emission reductions, and a parametric price is assumed.^ 

 ̂The price or marginal cost of pollution reduction varies with the level of reduction Our modeL, thus, 
can be viewed as linearizing the budget constraint within a neighborhood of the equilibrium, using the 
price associated with the equilibrating quantity. This is a standard procedure in applied studies (e.g., 
hedonic studies) for estimating a demand fimction when prices are variable. 
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With the use of equations (4.3)-(4.4), I can now state the maximization (subscription) 

problem for nation i: 

A number of remarks are in order. First, this is a Nash representation so that each 

nation chooses its optimizing response assuming the best-response level of spillins, Q;. 

A Nash equilibrium results when each nation in the model is optimized, given its 

counterparts'  best response, and would not unilaterally wish a different level of q^. 

Second, if nonvoluntary or q[ exists, then it is exogenous. Third, the choice variable, q^, 

can be positive, negative, or zero; positive (negative) levels indicate greater (smaller) 

reductions than mandated. Owing to this last factor, the problem can be solved in two 

parts for positive and negative q^; but in each case the Kuhn-Tucker conditions yield the 

same demand fimction. Fourth, exogenous factors include m-,, pi, a;;, qj, Q-, and Ej. As 

discussed earlier, Ei represents both envirorunental and political factors and acts as a shift 

variable. Fifth, if mandated levels, q^, are zero, then the choice variable is qj. 

Furthermore, the target level would then not be part of spillins—spillins would only be 

voluntary. Sbrth, ambient air quality is proxied by total depositions, Q;. I could also add 

q; by itself as an addition to the utility function to better proxy improved ambient air 

quality, since any decrease in the country's own emission improves air quality as less 

m«Ui[yi,ajj(q; '  +q?") + iag(qj +q •"),£;] 
1i j*i 

(4.6) 
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particulate matter transverses the country's atmosphere. This addition would not, 

however, change the demand equations in (4.7) and (4.8); hence, it is not included here. 

From the first-order conditions of the optimization problem, I can 

express the i"* nation's demand for q]' in terms of the exogenous variables, as 

qr =qrK, Pi, iaij(qj+qT).qT]. forq?'>0, (4.7) 

and 

qr = qr(mj> Pi. ttii,  E;, ittij-qJ), for q^ = 0, (4.8) 
j*i 

Because the latter is a special case of the former, I focus my remarks on the 

empirical representation of the demand equation in (4.7). This equation applies to each 

country in the region (model). In order to develop a model that can be empirically tested, 

I will use a Taylor series expansion of (4.7) rewritten in a more general form as 

q| '=f(xii, X2i, . . . ,  x„u). (4.9) 

where m equals the number of explanatory variables. Using equilibrium values, eu, e^,. . ., 

emi, as expansion points, the resulting Taylor series becomes, 

qr I(S-)(Xji-eji) 
i=i 

+ 2(&)(Xji-eji)(Xki-ey)+- (4.10) 
2|c=i j=i "J 

with = f(eu, ea,..., Cnu). This can be simplified by keeping just the linear terms, giving 

q r = 3o + IP jX ji + remainder, (4.11) 
j=i 



www.manaraa.com

100 

where Po = i - Z^(eji) and Pj = ^ - Therefore, using the original variables of (4.7), 
j=i J J 

the linear approximation of the i"* nations demand function for q[' becomes: 

qr =3o +Pimi + PjPi + Pstta + 34^1 

+ Plaij(qJ+qT)+YqT+B;.  i  = l, . . . ,  n (4.12) 

where Po is a constant. Pi, P2, P3, P4, p and y are coefl5cients, and 6i is an error 

(remainder) term. 

To simplify notation, I revert to a vector representation where q* is the n x I 

vector (qj',..., q^)'; is the n x 1 vector (q,^,. ., q^)', A is an n x n transport matrix, 

X is an n X 5 matrix of parameters, 3 is a 5 x 1 vector (Po,... ,P4)', and e is an n x 1 

vector (81,... ,e„)' of error terms. The i"" row of the X matrix is (1, m;, pi, oa, Ej). Finally, 

I must distinguish the A transport matrix from the A transport matrix. The latter includes 

zeros in the diagonal places, so that a country's own q,^ only appears on the left-hand side 

of its equation. The remaining terms in A are the ajjs. Thus, the equation system in 

(4.12) can be written in matrix form as 

q* = p A q* + XP + p A + yq^ + e. (4.13) 

where the targetted reductions afifect spillins, through the definition of spillins, and where 

these reductions have an independent influence owing to q[ in each country's 

optimization problem. 
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Empirical Model 

Equation (4.7) is a representation of a country's demand function for emission 

reductions. I hypothesize that the data observed in the real world are generated from this 

type of behavioral relationship and that the relationship provides a good representation of 

past behavior. To test this claim, I attempt to refute it. The methodology involves using 

observations on the relevant variables to estimate the parameters of approximations to the 

fimction, such as the one presented in equation (4.12). These parameter estimates (the 3s, 

p, and Y) can then be checked for logical consistency when interpreted as demand function 

parameters. 

To estimate equation (4.12) for sulfur and NO* reductions, I need data on these 

measures for the European nations that participated in the LRTAP Convention on Long-

Range Transboundary Air Pollution. For my empirical sample, Canada, Iceland, and the 

US are left out owing to my focus on European deposition, while Liechtenstein is 

excluded because it does not appear in the EMEP transport matrix as the grid is too 

coarse. Finally, Turkey is dropped because the data is inconsistent between different 

sources. I have 25 countries that generate useful observations for the study. 

The "snapshot in time model" of this chapter estimates demand functions for all 

nations, and thus assumes that the demand functions for each nation are identical, when 

controlling for measurable shift parameters. The estimated relationship must be 

interpreted as an "average" equation derived from the sample. 
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Variable Definitions 

Measures of q] and qj 

Emissions by year are obtained from EMEP (Tuovinen et ai., 1994). For a given 

year, the emissions of sulfiar are denoted by the variable S YY, in which the YY represents 

the year. For example, S80 depicts the emissions of sulfur in 1980 for the country under 

consideration. The NOx emissions are denoted by NOYY, so that N085 denotes the NOx 

emissions in 1985. 

The dependent variable in my models represents the voluntary reductions (in 1000 

tons) of sulfur or NO* emissions. With respect to sulfur, I need a measure of voluntary 

contributions before and after the 30 percent reduction target, concluded at Helsinki on 8 

July 1985. Because all reductions in emissions before the Helsinki Protocol are voluntary, 

I compute the q]' before the Helsinki Protocol as the difference S80 - S85 and refer to it 

as S8085. To estimate demand behavior after the Helsinki Protocol, I compute voluntary 

reductions as qJ' =0.7 x S80 - S90, which I refer to as S8090. My choice of 1990 as the 

ending year to compute the change is somewhat arbitrary; however, it is motivated by my 

desire to end the study period prior to the dramatic political changes in Eastern Europe 

and to provide some symmetry with respect to S8085. My qualitative conclusions are 

unaffected by this choice; i.e., using any ending year between 1988 - 1991,1 generate the 

same qualitative conclusions. 
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Following the Helsinki Protocol, the target rate of reductions ( q[) enters the 

demand function as an oogenous variable. This value is referred to as TARGET and is 

the rate of emission reductions specified in the Helsinki Protocol; i.e., 0.3 >< S80. I 

emphasize that countries with high rates of emissions in 1980 will necessarily face greater 

targets. As TARGET increases, I consequently expect that, ceteris paribus, voluntary 

contributions will decrease. 

For NOx, there are two measures of voluntary contributions. The first is N08087 

= N080 - N087, and the second is N08890 = N088 - N090.^ Technically, no targets 

existed for NOx during the study period, so that all changes in emissions are viewed as 

volimtary. Still, several nations have ratified the Sofia Protocol, making it conceivable 

that the demand relationship shifted in 1988. Therefore, the results presented below 

facilitate an explicit examination of the model before and after the Sofia Protocol. The 

choice of 1990 as the ending period is again somewhat arbitrary but provides consistency 

with the sulfur results. 

Voluntary reductions in sulfiir and NOx, expressed in percentages, are presented 

for selected years in Table 4.1. I first focus on percentage reduction in sulfur emissions 

between 1980 and 1985 (%SUL85) based on 1980 emissions, in which the entire 

reduction, if positive, is voluntary. Ten of the twenty-five nations had achieved the 

subsequently targeted reductions at the time that the Helsinki Protocol was adopted. 

Another six nations (Denmark, West Germany, Norway, Portugal, Switzerland, and the 

^ Murdoch, Sandler, and Sargent (1994, Table 7A) present the NO* results with alternative definitions of 
voluntary behavior. The results presented later are robust with respert to these alternative definitions. 
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Table 4.1. Percentage Reductions in Voluntary Sulfur and NOi Emissions by 
Country 

Country %SUL85 %SUL90 %SUL92* %NOX87 %NOX90 %N0X9; 

1. Austria 50.75 47.39 48.89 4.88 5.13 7.69 
2. Belgium 45.41 16.38 15.89 32.81 -12.46 -12.79 
3. Bulgaria -12.88 -28.54 -10.98 0.00 9.62 34.38 
4. Czechoslovakia 10.32 -8.79 -0.92 16.28 2.08 11.71 
5. Denmark 23.89 30.18 16.02 -11.72 7.21 7.21 
6. Finland 34.59 25.48 36.78 -2.27 -7.41 -10.74 
7. France 55.96 32.25 28.96 10.59 -7.36 -11.04 
8. E. Germany -25.58 -41.63 -41.63" -13.56 5.97 5.97" 
9. W. Germany 24.98 40.57 40.57" 1.78 11.17 11.17" 
10. Greece -25.00 -55.00 -55.00 0.00 0.00 0.00 
11. Hungary 13.97 8.11 8.11 -1.10 13.77 13.77 
12. Ireland 36.94 -5.68 -15.59 -57.53 -17.39 -13.04 
13. Italy 34.11 12.63 12.63 -14.86 -3.59 -3.59 
14. Luxembourg 33.33 3.33 3.33 17.39 0.00 0.00 
15. Netherlands 40.77 25.36 26.65 -2.01 1.25 1.97 
16. Norway 28.57 31.43 35.71 -25.14 -1.75 -0.44 
17. Poland -4.88 -8.29 -3.07 -2.00 16.34 21.24 
18. Portugal 25.56 -6.69 -6.69 30.12 -5.17 -5.17 
19. Romania 0.00 -3.00 -3.00 0.00 0.00 0.00 
20. Spain 34.04 0.24 0.24 11.68 0.00 0.00 
21. Sweden 43.85 37.31 37.31 -2.86 6.26 6.26 
22. Switzerland 23.81 20.79 20.79 -2.04 8.00 12.50 
23. Soviet Union 13.05 3.12 3.12" -23.44 -7.84 -7.84" 
24. United Kingdom 23.97 -7.05 -7.05 -10.03 -7.27 -7.27 
25. Yugoslavia 1 00

 
00

 

-43.34 -43.34" -25.71 4.55 4.55" 

Average 20.59 3.98 4.83 -2.75 0.84 2.66 

Source: Sandnes (1993). 
Tor countries with identical emissions reported in 1990 and 1992, data were either extrapolated or 
estimated by Sandnes (1993). 
"Based on the 1990 value because the country's borders changed in 1991. 
Notes: 
%SUL8S = Reduction in voluntary sulfur emissions from 1980 to 1985 as a percent of 1980 emissions. 
%SUL90 = Reduction in voluntary sulfur emissions from 1980 to 1990 as a percent of 1980 emissions. 
%SUL92 = Reduction in volimtary sulfur emissions from 1980 to 1992 as a percent of 1980 emissions. 
%NOX87 = Reduction in voluntary NO* emissions from 1980 to 1987 as a percent of 1980 emissions. 
%NOX90 = Reduction in voluntary NO* emissions from 1987 to 1990 as a percent of 1987 emissions. 
%NOX92 = Reduction in voluntary NO^ emissions from 1987 to 1992 as a percent of 1987 emissions. 
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UK) had achieved at least a reduction of 23 percent by the end of 1985. Czechoslovakia, 

Hungary, and the Soviet Union had akeady reduced emissions by 10-14 percent at the 

time of the treaty adoption. The overwhelming number of protocol participants had met 

the treaty's mandate or were well on their way to meeting it by the time of adoption. 

Mean reductions were 20.59 percent prior to the treaty. In the next column, I display the 

voluntary percentage reduction in sulfur emissions in 1990 based on 1980 emissions 

(%SUL90), where the 30 percent target is accounted for, so that positive levels indicate 

an overachievement of the mandate. Fifteen sample nations had exceeded mandated levels 

by 1990 and another five were within 9 percentage points of the target. 

A much diflferent pattern of voluntary cutbacks for NO* emerged prior to the Sofia 

Protocol. Voluntary reductions in NO* emissions between 1980 and 1987 as a percentage 

of 1980 emissions (%NOX87) were positive for only eight nations in Table 4.1. It is also 

noteworthy that these were much more modest than sulfur on average. Overall mean 

reductions were -2.75 percent. Additionally, only a couple nations displayed a monotonic 

pattern of cutbacks fi-om 1980 to 1987 when yearly observations are consulted (see 

Murdoch, Sandler, and Sargent, 1994, Figure 2). By 1990 shortly after the adoption of 

the Sofia Protocol, all but nine sample nations had maintained NOx emissions at or below 

1987 levels. A positive, but small, mean reduction in NO* emissions was evident. 

Measures ofnii 

To measure a nation's income, I use the Gross Domestic Product (GDP), which 

poses some problems. Perhaps, the most difficult problem is to find cross-nationally 
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comparable figures. This is especially true in my case because the sample of nations 

includes traditional market and nonmarket economies. Another problem is that there are 

many different sources for GDP estimates in the nonmarket economies. A third problem is 

that I want GDP estimates for different slices of time; thus, I need estimates comparable 

across nations and through tune. Fortunately, Summers and Heston (1988) have 

produced the Penn World Tables which address each of the above problems (available 

fi-om the National Bureau of Economic Research's WWW address). But because of the 

political changes that occurred in 1989, data for East Germany, Romania, and the USSR 

does not exist for 1990. Therefore, 1990 uses the 1989 estimates for those countries. 

Measures of cr„ 

The percentage of a country's sulfur or NO* emissions that falls within its own 

borders (OWNSUL or OWNNOX) is calculated fi'om the 1990 Budget of Oxidized Sulfur 

or Mtrogen in Tuovinen et al. (1994).^ The budgets are matrices that show, for each 

country, the origin of the depositions on its soil. To explain the process for calculating 

OWNSUL, consider the following example based on the actual data for Belgium. In 

1990, Belgium's total sulflir emissions measured 221,500 tons. Of this, 65.6 percent 

(145,300 tons) fell within the countries of the EMEP study region. I can identify where 

145,300 tons of Belgian emissions fell by examining the EMEP's 1990 Budget of Oxidized 

Sulfur. For example, 42,500 tons fell in Belgium itself; 18,500 tons, France; and 25,300 

^ The econometric model also uses the 1985 budgets from Tuovinen et al. (1994) but there is no 
significant difference in the results. 
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tons. West Germany. To find OWNSUL, I first divide the country's depositions within its 

own borders by the country's depositions within the countries of the study area. For 

Belgium, this calculation is 42,500 / 145,300 = 0.292. An identical procedure is used to 

calculate OWNNOX. OWNSUL is the measure of aa for sulfur and OWNNOX is the 

measure of an for NOx. 

In Figure 4.1,1 display the ttij values, measured along the vertical axis, for the 25 

sample nations. These an values are based on depositions within the 25 countries of the 

EMEP study region and are calculated in the same way as the example for Belgium. For 

every nation, ttii is greater for sulfur than for NO*. Thus, self-deposition of pollutants is 

more characteristic of sulfur and, as such, there are more country-specific gains fi^om 

reducing sulfur rather than NOx emissions ~ i.e., seleaive incentives are greater. 

Measures of Q; 

Qj indicates the amount of deposition reduction provided by other nations to 

country i, and denotes the "spillins". As shown earlier, there are two components of 

n 

spillins. The first S J reflects the spillins from the voluntary reductions, and is 
j ^ i  

n .J. 

indicated by SPILLi, while the second 2 ayQ j is a measure of the spillins fi^om satisfying 
j * i  

the target rate of emission reductions, and is represented by TSPELLj. The computation of 

SPILL and TSPELL is based on EMEP's budgets for sulfur and NO*, which in my case, are 
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25 by 25 matrices. For example, the seventh row of the 1990 matrix represents the 

depositions in France and the second column mdicates the emissions from Belgium. 

Building on the earlier example for Belgium, the entry in the seventh row, second column 

in the Budget of Oxidised Sulfiir is 18,500 tons. This means that from the 145,000 tons 

emitted by Belgium that fell within the selected countries, 18,500 tons fell within the 

borders of France. Thus, the empirical realization of ctn is 18,500 / 145,000 = 0.127, 

which implies that when Belgium voluntarily reduces its emissions so that the depositions 

within the study area fall by, say, 100 units, France is expected to realize a reduction of 

12.7 units of depositions. 

Using a similar method, I can find a matrix of ayS. With zeros along the diagonal, 

this matrix is the empirical realization of A and allows us to calculate the voluntary 

25 
reductions in spillins for France or country 7 as SPILL? = SotyjqJ, where an = 0. 

Alternatively, I can represent the calculation of the 25 by 1 SPE.L vector as A x q*, 

where q* is the 25 by 1 vector of voluntary contributions. The calculation is similar with 

respect to TSPILL. 

Measures of pi 

We want a measure for the price of emission cutbacks in the various scenarios that 

reflects each country's energy pathway (i.e., its actual and anticipated pattern of energy 

generation), its level of emission reductions, and the marginal cost (MC) associated with 

the actual level of emission reductions. The Regional Acidification Information and 
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Simulation (RAINS) model, version 6.1, of the International Institute for Applied Systems 

Analysis (HASA) (1993) contains MC curves by countries for different years. For my pre-

Helsinki estimates, I use the RAINS MC curves for each country to find the MC 

associated with the level of sulfur reductions in 1985, taken fi^om Tuovinen et al. (1994). 

For the Soviet Union alone, I calculate the relevant MC using an aggregate of the regions 

of the former USSR. I assume that the MC, while diflferent among countries, is 

parametric at the actual (equilibrium) level of emission cutbacks. For the post-Helsinki 

estimates, I employ 1990 sulfur reduction levels for the sample countries fi-om Tuovinen, 

et al. (1994) and the 1990 MC curves fi-om the RAINS model to calculate the relevant 

MC levels for each country. Henceforth, I call MC levels for sulfur, MCSUL.® 

I follow the same procedure for obtaining the MC measures for each country and 

different snapshots in time for NO*. For the pre-Sofia period, emission cutbacks are based 

on N08087, which are then used in conjunction with the RAINS MC curves for 1985 to 

ascertain the MC levels for each sample country. (There is no RAINS MC curve for 

1987). For the post-Sofia period, emission cutbacks are based on N08890, which are 

then used in conjunction with the RAINS MC curves for 1990 to compute the MC levels 

for the estimates (MCNOX).' 

^ The marginal cost curves provided by RAINS are not continuous fimctions, but step fimctions. So 
another measure of price I calculated was the change in MC that would occur if more reductions were 
undertaken by a nation. These MC estimates were the ones reported in Table 4.2. 
' More information on control costs and emission reductions can be found in Emission Control Costs and 
their Influence on International Emission Reduction Strategies (United Nations. 1991b). 
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Measures of Ei 

£i denotes the influences that shift a nation's emission reductions besides income, 

spiUins, target, (XH, and price. One influence, explored recently by Congleton (1992), is the 

extent of democracy and/or freedom in the nation. The logic of this influence is that 

autocracies face a higher relative price for pollution abatement than their democratic 

median-voter counterparts. Moreover, autocracies are less risk averse, making them less 

interested in policies to protect the environment. I attempt to control for this influence by 

using Freedom House's index of civil liberties and index of political freedoms (Gastil, 

1989 and McColm, 1991). Each index may take on an integer value from 1 through 7, 

with 1 being the greatest level of either civil liberties or political freedoms and 7 the least. 

I convert the sum of the two indices into a binary variable called FREE, which equals 1 for 

a sum less than or equal to 4, and 0 otherwise. Voluntary contributions are anticipated to 

respond positively to FREE. I use 1985 FREE indices for the S8085 estimates and 1990 

indices for all of the other estimates. 

A second influence that may shift the demand relationship is the potential for 

environmental damage caused by sulfiir or NO* emissions. For example, a country with 

the potential for large damages may demand more emission reductions to protect its 

resoxirces. Thus, a nation with relatively large forest cover or a large susceptible 

population may desire more reductions to minimize the potential damages to their forests 

and exposed populations. To control for these influences, I examine two measures of 

potential damage. The first is PFOREST, which is the percentage of a nation's land area 
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classified as forest and woodland (UNEP, 1993). Depositions of sulfur and NO* either 

directly, or indirectly through acid rain, are expected to have a harmful effect on a nation's 

forests and woodlands. Damage to alpine lakes and forests was the first indication of acid 

rain's damaging effects. Therefore, one expects that the greater the percentage of a 

country that is covered by forest, the greater the incentive to reduce emission levels of 

SO2. It is also possible that since NO* is also a component of acid rain, reductions of NOx 

might also occur. But the effects of NO* are much less clear since nitrogen is a plant 

fertilizer. Studies do not give an unqualified answer at this point. Therefore I expect 

PFOREST to have a stronger effect in the sulfur than the nitrogen regressions. 

For potential damages fi-om ambient air quality degradation attributable to NO* 

and sulfur, I employ a measure of the population most at risk— the percentage of a 

nation's population living in urban areas. This variable is denoted as URBAN and is taken 

fi-om the 1985 and 1990 editions of The World Almanac and Book of Facts. Adverse 

health effects are caused by ozone pollution and the damage to buildings and monuments 

results from acid rain. It is hypothesized that the greater the percentage of urbanization, 

the more likely a country will be to reduce its emissions of sulfur and nitrogen oxides. 

One would expect the significance of URBAN to be higher in the nitrogen regressions 

than in the sulfur regressions because NO* is the primary chemical leading to formation of 

ozone. 

I am particularly interested in the third set of demand shift influences, namely, 

international policy actions. I hypothesize that the countries that ratified the Helsinki and 

Sofia Protocols are more apt to have a different demand relationship when compared to 
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countries that did not.^ In addition, one would expect that countries that delayed 

ratification would have been less likely to make emission reductions than countries that 

ratified the protocols shortly after their signing. In order to capture these effects, the 

variables HELSINKI and SOFIA are used (and were obtained fi-om the Air Pollution 

Studies series published by the United Nations). They consist of the number of years since 

a protocol has been ratified. For example, a country ratifying the Helsinki Protocol in 

1986 would receive a '4' while a country ratifying the protocol in 1989 would receive a 

' 1.' A country that had not ratified the protocol by 1989 would receive a '0.' 

An additional shift variable has been added to the demand fimction for NOx 

emission reductions. In 1958 the EEC established an agreement designed to reduce motor 

vehicle emissions. This agreement consisted of a large number of regulations. Some 

nations have passed none of these regulations while several countries have passed many of 

them (United Nations, 1992). The EEC variable represents how many of eight laws, 

singled out as the most relevant, have been passed by the European nations. This variable 

is designed to be a proxy for institutional behavior in regards to NO* reductions. 

Econometric Model 

Using the above-defined variables, I can re-specify the basic regression equation in 

(4.12) for voluntary sulfiir reductions in the post-Helsinki period as. 

® The source for the ratification data is personal correspondence with the Treaty Section, Office of Legal 
Affairs, United Nations. These data are available in Murdoch, Sandler, and Sargent (1994). 
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S8090i = po + PiSPILLi + p2TSPILLi + piGDP; + P2MCSULi + psOWNSULi 

+ P4FR££i + PsHELSINKIi + PeURBANj + yTARGET; + ei, (4.14) 

where S8090 is the dependent variable and i denotes the country. In (4.14), the piS, PiS, 

and Y are unknown slope coefBcients, Po is a constant, and 8; is an independent identically 

distributed random variable assumed to follow a normal distribution with a mean of 0 and 

a variance of s^. Equation (4.14) should be viewed as representative of my regression 

models; i.e., I estimate numerous similar expressions by changing the dependent variable 

and/or the set of independent variables. 

Our empirical task is to find estimates for the pjs, PjS, y, and s^. At first glance, it 

may appear that the method of ordinary least squares (OLS) is appropriate for estimating 

the parameters, but this is not the case. In fact, OLS would generate biased and 

inconsistent estimates due to the SPILLj term, which is a weighted average of q]' the 

dependent variable. Thus, values for S8090 appear on the left- and the right-hand side of 

the equation. But note that for the i"* observation, the SPILL term is a weighted average 

of the other (i.e., other than i) S8090 values. Thus, the dependent variable-is often said to 

appear in "lagged" form on the right-hand side. This terminology is lifted from time-series 

models where the t**" observation on the dependent variable is a fimction of the t - l" 

observation. In my case, I do not lag over time but over geographic space (i.e., 

countries). The SPILL term is therefore called a "spatially lagged" dependent variable 

(see Cressie, 1993; Anselin, 1988). Intuitively, the problem with OLS is evident by 

solving for the dependent variable, because the resulting expression will have the Ps, y. 
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and 8 multiplied by the pi and the OijS weights, making the model nonlinear in the 

parameters. 

To get unbiased and consistent estimates, I appeal to the method of maximum 

likelihood (ML), which is appropriate if the EiS follow the normal distribution. An analysis 

of the normal probability plot of the ML residuals (not shown) suggests that the normality 

assumption is reasonable for the models represented by equation (4.14).' Thus, I employ 

the ML approach as described in Anselin (1988, Chapter 12) to estimate the parameters. 

The ML parameter estimates for some alternative models of sulfur reductions are 

presented in Table 4.2, while the NO* models are given in Table 4.3.^° A quick scan of the 

two tables reveals that the sulfiir data fit the models better than the NO* data. In fact, 

approximately 67 percent of the coefficients in the sulfiir models are statistically significant 

(a = 0.10, one-tail test using the cumulative normal distribution) with the anticipated 

signs, while 37 percent are significant with the anticipated signs in the NO* models." 

Despite "looking good," I still must guard against making incorrect inferences in the sulfiir 

models. Thus, I considered four sets of regression diagnostic procedures. The procedures 

were performed on model 5 presented in Table 4.2, because, as I argue below, it is one of 

the best models. 

' See Murdoch, Sandler, and Sargent (1997). The normal probability plot is also called the ncnnal Q-Q 
plot (Cleveland, 1993, Chapter 2). 

The parameter on TSPlLLi (pa) is insignificant in all models (see Murdoch, Sandler, and Sargent, 
1997). Thus, I have dropped this variable when presenting the main results. 

The one-tail test is us«l since the theoiy underlying the models (discussed in ch^ters 2, 3, and 4) 
predicts what the expected sign is for each of the variables. 
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Table 4.2. Maximum Likelihood Estimates of the Spatial Model for 
SO2 Emission Reductions (Z-values in Parenthesis) 

Variables 

Pre-Helsinki Post-Helsinki 

Variables (1) (2) (3) (4) (5) (6) 

SPILL -0.18 -0.23 -0.27 -0.91 -1.05 -1.03 
(-0.99 ) (-1.20) (-1.45) (-3.29) (-3.70) (-3.56) 

GDP 0.80 0.74 0.39 1.84 1.86 1.82 
(3.14) (2.77) (1.03) (7.34) (7.62) (6.91) 

MCSUL -0.67 -0.63 -0.49 -0.16 -0.18 -0.16 
(-2.05) (-1.93) (-1.45) (-1.11) (-1.28) (-1.16) 

OWNSUL 24.10 27.82 50.48 21.61 25.47 29.79 
(1.64) (1.82) (2.14) (2.19) (2.55) (2.19) 

FREE 844.86 815.20 908.59 663.62 642.87 655.82 
(4.30) (4.08) (4.38) (4.19) (4.15) (4.17) 

TARGET -1.03 -1.08 -1.09 
(-6.30) (-6.66) (-6.66) 

HELSINKI 141.00 70.86 91.30 
(1.25) (0.59) (0.71) 

URBAN 3.99 6.16 4.72 4.42 
(0.73) (1-11) (1.20) (1.10) 

PFOREST -9.68 -2.43 
(-1.22) (-0.48) 

Constant -856.22 -1160.52 -1605.33 -983.18 -1308.72 -1338.69 
(-1.99) (-1.97) (-2.38) (-3.34) (-3.35) (-3.39) 

-Log Likelihood. 181.23 180.97 180.26 171.95 171.29 171.18 

0.70 0.70 0.71 0.75 0.72 0.72 
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Table 4.3. Maximum Likelihood Estimates of the Spatial Model for 
NOx Emission Reductions (Z-values in Parenthesis) 

PRE-SOFIA POST-SOFIA 

Variables (1) (2) (3) (4) (5) (6) 

SPILL -0.80 
(-2.66) 

-0.70 
(-2.26) 

-0.67 
(-2.11) 

-1.63 
(-4.34) 

-1.64 
(-4.83) 

-1.54 
(-4.36) 

GDP -0.32 
(-2.35) 

-0.38 
(-2.73) 

-0.36 
(-2.22) 

0.22 
(1.77) 

0.28 
(1.86) 

0.36 
(2.24) 

MCNOX 0.14 
(0.62) 

0.18 
(0.82) 

0.15 
(0.66) 

0.00 
(-0.36) 

-0.01 
(-0.55) 

-0.01 
(-0.59) 

OWNNOX -4.22 
(-0.61) 

-1.27 
(-0.18) 

-2.37 
(-0.29) 

-23.35 
(-3.20) 

-26.35 
(-2.98) 

-28.90 
(-3.24) 

FREE -98.25 
(-1.61) 

-87.02 
(-1.46 ) 

-80.85 
(-1.29) 

1.95 
(0.03) 

3L19 
(0.46) 

45.75 
(0.67) 

SOFIA 52.22 
(1.25) 

32.57 
(0.74) 

26.34 
(0.60) 

URBAN 2.37 
(1-28) 

2.32 
(1.24) 

1.83 
(0.82) 

2.32 
(1.04) 

PFOREST 0.63 
(0.29) 

3.23 
(1.47) 

4.15 
(1.83) 

EEC -14.74 
(-1.26) 

Constant 39.21 
(0.94) 

-120.38 
(-0.91) 

-129.77 
(-0.96) 

52.03 
(1.02) 

-143.85 
(-0.84) 

-154.34 
(-0.92) 

-Log-likelihood 155.48 154.71 154.67 159.49 158.18 157.42 

0.65 0.68 0.68 0.41 0.67 0.66 
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The first procedure involves visually examining the scatterplot of the ML residuals 

and normal probability plot. The second procedure is a test for heteroskedasticity. Using 

the ML residuals and the continuous independent variables, the Breusch-Pagan c^ (and 

Spatial B-P) equals 6.28. The p-value for the test is 0.51, indicating that I fail to reject the 

null hypothesis of homoskedasticity.^^ Thus, there is little reason to doubt the constant 

variance assumption. The third procedure is a Lagrange Multiplier test for spatial error 

dependence (similar to the Durbin-Watson test for serial correlation in time-series 

models). The value was 0.168, giving a p-value of 0.68. Therefore, the assumption of no 

spatial error dependence cannot be rejected.'^ 

Because only a fi'action of the total land area in the Soviet Union is covered under 

the Helsinki Protocol, I suspect that this country should not be treated like the others. For 

the fourth procedure, I re-estimated the model dropping the Soviet Union. The results are 

similar to those presented in Table 4.2; except that the HELSINKI coefificient is now 

significant and the URBAN estimate is negative; hence, there does not appear to be 

sufiBcient evidence supporting dropping this nation. 

Empirical Results 

The post-Helsinki regressions results reported in Table 4.2 give support for the 

theoretical model. Eight of the nine variables (SPILL, GDP, MCSUL, OWNSUL, FREE, 

TARGET, HELSINKI, PFOREST, and URBAN) have the expected signs. Of the seven 

The Breusch-Pagan tests for all other models in the Sulfur regressions were not significant and only 
model four had a p-value less than model S. 

All other models in Table 4.2 exhibited no spatial dependence in the error term, either. 
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variables used in all three post-Helsinki models, all except MCSUL and HELSINKI are 

significant at the 99% confidence level The rest of this section will examine the results in 

more detail, comparing and contrasting pre- and post-treaty behavior in emission 

reductions for sulfur. 

In the pre-Helsinki period, the SPILL terms for each of the three models has the 

correct sign, but is significant at the 10% level only in model 3. However, in all three of 

the post-Helsinki models, the SPELL term is negative and highly significant, possessing a 

larger magnitude than in the pre-Helsinki models. Therefore it appears that voluntary 

reductions in the post-Helsinki period are more susceptible to strategic behavior. The 

post-Helsinki results generally confirm the model of voluntary behavior that underlies my 

empirical specification. The negative and significant estimate on the SPILL term is 

entirely consistent with strategic (within-region) fi-ee riding associated with the Nash 

assumption, whereas the positive income effect is consistent with the demand for emission 

reductions being income normal.'"* Ceteris paribus, when spillins of SO2 are reduced by 1 

kt, a country will increase its emissions (i.e. decrease its reductions) of SO2 that land 

within the study region by 1.05 kt (using model 5). This result accords with the Nash 

behavior model presented earlier. This partial effect is dramatically diflferent than the gross 

effect as measured by the correlation coeflBcient. For the post-Helsinki period, I 

This is a partial measure that indicates the influence of reduced SPE.L on voluntary reductions, holding 
all other influences constant. Since some of these influences are supportive of voluntary cutbacks, the 
negative estimates on the SPILL term is entirely consistent with nations having positive overall cutbacks 
owing to these other influences. 
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calculated the correlation between SPILL and S8090 to be -0.29, which suggests no 

strong association. 

The positive value for GDP in the pre- and post-Helsinki period indicates that the 

existence of an income effect for emission reduction is a reasonable hypothesis. Model 2 

in Table 4.2 indicates that with all other factors held constant, for every one billion dollar 

increase in a country's GDP there is a 0.74 kiloton (kt) reduction in that country's SO2 

emissions in the pre-Helsinki period. The contribution of GDP to emission reductions is 

even more pronounced in the post-Helsinki period. For every billion dollar increase in a 

country's GDP the result is a 1.86 kt reduction in SO2 emissions (using model 5). Using 

the coeflBcient on GDP (the change in voluntary emission reductions resulting from a $1 

billion change in GDP) and multiplying it by the average value of GDP over the average 

value of emission reductions gives the income elasticity of emission reductions. 

Environmental quality (as represented by reductions m SO2) is an income inelastic good in 

the pre-Helsinki period (income elasticity of demand = 0.6) but a highly income elastic 

good in the post-Helsinki period (income elasticity of demand = 20.8). Therefore, it 

appears that in the post-Helsinki period, citizens of wealthy nations came to value 

environmental quality more (or citizens in the less wealthy nations began to value it less). 

FREE performs as predicted in both periods. The positive coeflBcient on FREE 

indicates that countries defined as free had SO2 emission reductions that Ceteris paribus. 

were about 800-900 kt more than those of other non-free nations in the pre-Helsinki 
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period and about 650 kt more in the post-Helsinki period. It appears that political and 

civil freedoms led to greater environmental concern and larger emission reductions. 

OWNSUL (expressed as a fraction between 0 and 1), which is positive and 

significant at the 5% level in model 2 of Table 4.2, indicates that ceteris paribus, for every 

1% increase in the amount of its own emissions falling on its own soil, a country reduced 

its emissions by about 28 kt. Similar results occur in the post-Helsinki period. Here, the 

coeflBcient on OWNSUL indicates that for every 1% increase in a country's own 

deposition rate, there is a reduction of between 22 and 30 kt in SO2 emissions. These 

resuhs are therefore consistent across time indicating that no significant shiit in behavior 

took place in regards to OWNSUL or FREE during the period under study. 

MCSUL (the marginal cost of emission reductions) has the predicted negative sign 

in both time periods but the values are only significant in the pre-Helsinki period and 

model 5 of the post-Helsinki period.'^ 

While URBAN is of the correct sign, it is unfortunately not significant. The 

positive coeflBcient on URBAN accords with my hypothesis. Other measures designed to 

take health effects into account, such as the percentage of the population over 65 or the 

percentage under 15 (and the proportion of both younger and older populations), 

performed no better than URBAN. Thus, suggesting that the pre-Helsinki contributions 

were not motivated by health concerns. 

Because of the large marginal cost differences between countries, the square root of MCSUL was 
entered into the model, but the results were not significantly different than those reported. 
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PFOREST also did not perform well as predicted. In both the pre- and post-treaty 

periods, it was negative but not significant. More importantly, the introduction of this 

variable altered the results in the pre-Helsinki model. First, SPILL became significant, but 

the coeflBcient for GDP became insignificant. One likely explanation for these dramatic 

effects would be multicoUinearity between PFOREST and some other variables, especially 

with GDP, but a test of simple correlations between the variables failed to turn up any 

significant multicoUinearity. 

Fortunately, the inclusion of PFOREST in the post-Helsinki model did not have 

any significant effects as it did in the pre-Helsinki models. Other measures designed to 

measure emission reductions as a response to forest damage due to acid rain, such as a 

nation's critical load, total forested area, and percentage of injured conifers and broadleaf 

trees, were either insignificant or of the wrong sign. 

Several new variables are included in the post-Helsinki regression results. 

TARGET (the target level of emissions) was negative and significant at the 1 percent level 

in all three of the models. The results indicate that the higher the target level of emissions, 

the less the reduction in a country's voluntary level of emission reductions. In fact, for 

every one kt increase in the target level, the resuh was a reduction of voluntary emissions 

between 1.03 and 1.09 kt. Ceteris paribus, nations that faced a greater target level of 

reductions are achieving less in voluntary reductions. Another additional explanatory 

variable, HELSINKI, did not turn out to be significant but the sign was positive, which if 

significant, would have indicated that nations ratifying the Helsinki Protocol early were 
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more willing to make emission reductions beyond the target than nations that did not ratify 

the protocol or delayed ratification. 

When comparing the pre-Helsinki (model 2) to the post-Helsinki (model 5) 

estimates, I find that the size of the spillin response increased quite substantially in the 

post-Helsinki sample. Apparently, emission reductions beyond the mandated 30 percent 

cut are subjected to greater strategic behavior than the initial pre-Helsinki cuts. The 

slightly increased income effect may suggest that the post-Helsinki reductions are more 

discretionary, perhaps owing to the lack of a political constraint that mandates additional 

cuts. Because of the poor performance of PFOREST and URBAN in the pre-and post-

Helsinki estimates for sulfur, model 2 of both periods provides the most parsimonious 

result. 

A comparison of the log-likelihood values gives little support in favor of a 

particular model in either period. I prefer model 5 primarily because I believe that the 

susceptible population is theoretically an important variable. Similarly, model 2 is 

preferred for the pre-Helsinki period. Henceforth, models 2 and 5 are viewed as the best 

representations of the data. 

The regression results, for NOx emission reductions, reported in Table 4.3 offer 

much less support for the voluntary reduction model, but some interesting patterns 

emerge. In both pre- and post-Sofia regressions, the SPILL terms are significant, 

negative, and of even greater magnitude, implying that the strategic response to foreign-

originated depositions is greater with respect to the voluntary reductions in NO*. Ceteris 
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paribus, a reduction of 1 kt of NOx depositions from other countries results in an increase 

in NOx emissions between 0.7 and 0.8 kt tons of NOx in the pre-Sofia period and an 

increase between 1.5 and 1.6 kt in the post-Sofia period. Again, strategic behavior 

appears to have increased in later periods as it did for sulfur, giving evidence that the 

subscription model is applicable to NO* emissions reductions as well as sulfur. 

In the pre-Sofia period GDP is negative and significant, a reversal of the results for 

the sulfur models. The results are remarkably consistent. On average, for every one 

billion dollar increase in GDP, a country will increase its emissions (decrease its emission 

reductions) by 0.32 to 0.38 kt of NO*. However, in the post-Sofia period, the results are 

quite different. GDP is positive and significant (at better than the 5 percent level) in all 

three models. The behavior of FREE is also unusual in both periods. It is noteworthy that 

the FREE dummy variable is negative, and significant in all pre-Sofia models, hinting that 

nations with the greatest civil and political liberties may voluntarily reduce emissions less 

on average when compared to nations with fewer liberties. But FREE is positive and not 

significant in the second period making my conclusion less certain.'® 

These two changes in GDP and FREE are the most dramatic difference from the 

sulfur models and require some explanation. Sulfur emissions are predominately from 

power plants and other stationary sources, while NO* emissions are mainly due to mobile 

sources. FREE countries have a relatively larger number of vehicles on the road making 

NOx emissions much more difficult to control than in the FREE countries where private 

In contrast, Murdoch, Sandler, and Sargent (1997) found FREE to be negative and significant in the 
post-Sofia period but not significant in the pre-Sofia period. 
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ownership of vehicles is uncommon. Likewise countries with low levels of GDP may not 

depend on motor vehicle transport as much as higher income countries do (perhaps as a 

result of a less developed infrastructure). Therefore, it may be easier for countries that 

depend less on motor vehicle transport to make greater cuts in their NO* emissions. It 

seems that further investigation of the link between the number of motor vehicles, political 

freedom, and a country's GDP would be usefijl. 

Another unexpected result is the curious behavior of OWNNOX. Like that for 

OWNSUL, I hypothesize that this value should be positive, indicating that the more of a 

country's emissions which fall on itseU^ the more likely the country will be to make 

emission cutbacks. However, the value of this variable is consistently negative in both 

pre- and post-Sofia periods. 

The marginal cost of reducing NO* emissions (MCNOX) is not a significant 

explanatory variable in either the pre- or post-Sofia periods, although in the post-Sofia 

period, all estimates have the correct negative sign. It would appear that the cost of 

pollution control was not a significant determinant of emission reduction of either NO* or 

Sulfiir. 

URBAN has the correct sign but is significant in only one of the pre-Sofia periods. 

I maintain the hypothesis that more urbanized countries have reduced emissions of NO* by 

a larger percentage than less urbanized countries, but another variable will be needed for 

stronger evidence, such as city levels of ozone. Other measures of human health, such as 

the percentage of a country's population above age 60 or below age 15, produced results 
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that were not significant or of the wrong sign. Certainly then, human health effects were 

not the driving force behind either the Sofia or Helsinki Protocols. 

One might expect a high correlation between the urbanization level (URBAN), 

GDP, and FREE, but this is not proven out by the data. Using 1985 data, the correlation 

between GDP, URBAN and FREE is -0.20 and +0.20 respectively, while that between 

URBAN and FREE is -0.26. Likewise, the correlation between PFOREST and other 

variables is small. PFOREST and GDP have a -0.20 correlation, while PFOREST and 

URBAN have a correlation of -0.16. 

The introduction of PFOREST into the model gives a positive result that is 

significant only in the second period. This may indicate that nations are becoming more 

aware of the damage acid rain is doing to forests. However, if this hypothesis were true, 

similar results should be apparent in the post-Helsinki results. There is little evidence then 

for my hypothesis that PFOREST would have the strongest (positive) effect in the sulfur 

regressions, while URBAN would play a more significant role in the nitrogen regressions. 

The variable, EEC, turned out to be negative but not significant. However, I may 

possibly explain this resuh as follows; nations signing this treaty (which dates back to 

1958) may have already made substantial cutbacks in motor-vehicle emissions. Another 

possibility is that nations that have signed this law have many vehicles and therefore have a 

difiBcult time cutting back. Looking at the actual data though does not shed any light on 

this because there seems to be no pattern. For example while Romania and Yugoslavia 

have passed four and five of the laws, Greece and Denmark have passed none. 
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For symmetry with the sulfiir regressions, model 2 is preferred for the NO* 

regressions, since URBAN and PFOREST contribute little explanatory power to the 

model. Although the PFOREST coefScient is positive and significant in model 6, its 

inclusion does not significantly improve the model, so there is little statistical evidence 

favoring a particular model. Therefore model 5 is also preferred in the post-Sofia period. 

Given the above results it is not surprising that the increases in the log-likelihood 

fimction value fi-om -155.48, -154.71, to -154.67 (models 1, 2 and 3) and -159.49, -

158.18, to -157.42 (models 4, 5, and 6) indicate that no model is statistically superior. 

Tests for heteroskedasticity using the Breusch-Pagan and Spatial Breusch-Pagan 

tests detected no significant problems in the pre-Sofia regressions. However, there was 

substantial heteroskedasticity in the post-Sofia period. This problem was corrected by 

using a routine in SpaceStat that expressed the error variance as a linear function of 

OWNNOX.'^ The Lagrange Multiplier test on spatial error dependence in each models 

resulted in values that were not significant. Therefore, the hypothesis of a normally 

distributed error term could not be rejected. 

A contrast of the sulfur and NO* results yields several interesting insights. First, at 

the supranational level, we see evidence of strategic behavior for both environmental 

problems. This lends support to our modeling efforts that cast each problem as a regional 

collective action problem. Second, the influence of political and civil liberties affects the 

two pollutants diflferently: liberties are supportive of emission reductions for sulfur, but 

" Specifically, Var[e] = Zv, where Var[e] is an N by 1 column vector of the enor variances, Z is an N by 
1 matrix of the squared values of OWNNOX, and v is the corresponding vector of coefficients. 
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are nonsupportive for NO*. In the case of sulfiir, the major share of emissions stems from 

power plants that are government-controlled monopolies; in the case of NOx, the major 

share of emissions come from a large number of small (mobile) polluters. Third, we see 

that the amount of a nation's emissions that fall within its borders (OWNSUL and 

OWNNOX) is much more relevant in the sulfur model. A relatively large fraction of a 

nation's sulfiir emission falls on itself while for NO*, the emissions travel much further or 

dissipate into the atmosphere. The transferability of NOx means a greater role for strategic 

behavior at the supranational level, which is borne out by the larger absolute coefficients 

on the SPILL variable of NO*. 

In comparison with the results reported in Murdoch, Sandler, and Sargent (1994) 

(MSS), the results are qualitatively similar in many respects but there are some notable 

differences that may be due to several causes. First, different regression software was 

used. The results in this chapter were derived using the SpaceStat program from West 

Virginia University's Regional Research Institute, while the MSS paper uses a program 

written in SAS.^® 

Second, much of the data used in this dissertation comes from different sources 

than that used by MSS. Emission data and the budgets for both sulfur and nitrogen are 

taken from the 1994 Report of the Norwegian Meteorological Institute while MSS use the 

Institute's 1993 Report. GDP rather than GNP is used as a measure of national income, 

and the change in the marginal cost (MC) of the next level of emission reduction is used 

More information on spatial econometrics programs can be fomid in Anselin and Hudack (1992). 
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rather than the marginal cost. Although MSS use the square root of both GDP and MC, 

the results are similar to those of the untransformed variables. Zero values for MC 

prevented the use of a log transformation. 

Third, some variables used by MSS were dropped and new ones added. The 

percentage of the population over age 65 (POP65) has been dropped and replaced by 

URBAN. HELSINKI and SOFIA were changed from binary variables to discrete integer 

variables. Finally, EEC was a new variable added to the post-Sofia regression.'® 

Policy Implications 

In Table 4.1, presented earlier, a majority of nations had either met or were close 

to meeting the 30 percent reductions (from 1980 levels) in SO2 emissions by the time of 

the signing of the Helsinki Protocol. This suggests that, once a majority of nations can 

meet a given standard of reductions, the treaty is drafted and subsequently approved as 

others catch up. For many countries, the cutbacks aheady achieved served as a blueprint 

for the treaty stipulations. A similar pattern regarding the Sofia Protocol emerged in the 

case of NO*. Since the reductions were slow to achieve and modest, the stipulated 

reductions in the Sofia Protocol were also modest—maintaining 1987 emission levels. 

If this pattern of voluntary reductions preceding the framing of treaties continues, 

then a policy prediction foUows from Table 4.1. In the case of sulfiir, the percent of 

The change in GDP was another explanatory variable used in the models, but is not included in the 
models because it is not theoretically justified. The coefficient of this variable was expeaed to be negative 
because periods of economic expansion should increase emissions of sulfur and NO^. The coefBcient did 
turn out to be negative in all the models but was only significant in the post-Helsinki period. 
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voluntary sulfur emission reduction achieved in 1992 (%SUL92) is on average 4.8 percent 

bevond the targeted reductions of the Helsinki Protocol. Ten nations have achieved 

voluntary reductions greater than 15 percent bevond the 30 percent target. Thus, a new, 

stronger protocol should emerge in the next couple of years that restricts sulfur emissions 

by another 10-15 percent from 1980 levels. In the case of NO*, I can be much less 

sanguine. At the end of 1992, reductions from 1987 levels are 2.66 percent (on average) 

for the 25 sample nations in Table 4.1. Subsequent protocols on NOx will take a longer 

time to achieve. Uncertainty regarding the harmful effects of NO* may add to the 

reluctance of nations to rush into a treaty that restricts pollutants. The detrimental effects 

of sulfur-induced acid rain on forest degradation appear better understood than those of 

nitrogen-induced degradation (United Nations, 1992, p. 48). 

Our prediction of a stronger protocol on sulfur emissions is bom out by the Oslo 

Protocol drafted on 14 June 1994, but as of March 1996 still unratified. This protocol 

mandates stricter percentage reductions from 1980 levels than the Helsinki Protocol for 

most treaty countries by the year 2000. (United Nations, 1994, p. 15). Unlike earlier 

protocols, percentage reductions vary by country in the Oslo Protocol. Countries with 

greater current reductions are given stricter targets, consistent with the spirit of our 

hypothesis. No stricter protocol for NO* has yet been drafted. 

Because a greater fraction of NO* can be transferred outside the treaty region, 

there is the need for a larger treaty region if the externality is to be truly internalized. As a 

consequence, monitoring and evaluation activities need to be extended beyond their 
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current boundaries. A similar recommendation does not follow for sulfur. Transnational 

liability assignments and a system of enforcement may be necessary if nations are to 

become more responsible about NOx as a pollutant. These are not easy changes to 

engineer for transnational relationships that hinge, to a large extent, on national autonomy. 

Another policy consideration involves control at the national level. For NOx, 

nations must achieve greater control over mobile polluters. If increased demands for a 

cleaner environment are to be attained as a nation's income rises, then individual freedoms 

have to be traded off for more centralized control over NO* polluters. For NOx, unlike 

sulfur, policy must first be directed at fixing the collective action problem at the national 

level. Then attention can be focused on the second tier, where collective action is needed 

at the supranational level. If the first tier problem is not resolved, there will be little 

progress on the second. 

Yet another policy consideration concerns inducements or selective incentives for 

some nations. The pattern of emissions and their reductions differ greatly among the 

convention members, due to differing technologies and incentives (i.e., OWNSUL and 

OWNNOX). For example, the transitional economies have a difficult time cutting their 

sulfur emissions when compared with the other protocol members. For the most part, 

treaties view signers identically despite great differences in emissions and technology; 

mandated cuts apply in equal percentage terms to all. A degree of differentiation that 

changes over time may be supportive of treaty ratification. Because these transitional 
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nations tend to do more for curbing NOx, a trade-off among pollutants might facilitate 

treaty ratification and compliance in the short-run. 

Conclusion 

Two different experiences emerge when the econometric model is applied. For 

sulfur reductions, the model performs reasonably well, thus supporting my theoretical 

construct. Free riding does, indeed, characterize the ratifiers of the Helsinki Protocol. 

Increases in income and political freedoms augment emission reductions. This suggests 

that foreign aid and the promotion of democracy on behalf of the wealthier countries can 

have a dividend in terms of a better environment for all. Greater target levels limit the 

extent of voluntary reductions in the post-Helsinki era. Voluntary cutbacks in 1992 bode 

well for greater mandated reductions being placed into future protocols. For NO*, the 

model performs in a much less convincing manner. This is probably due to the large 

number of small polluters whose uncoordinated actions call mto question my unitary 

decision maker assumption at the national level. In fact, political freedoms appear to 

undermine the nations' actions to curb NO* pollutants, thus lending support to this 

hypothesis. Thus, two collective action problems that have some similarities do not 

require the same policy prescriptions. In hindsight, the LRTAP Convention was properly 

designed when it provided for protocols to focus on separate pollutants. If all pollutants 

had been treated the same, much less progress would have been made for sulfur. 
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CHAPTER 5. CHANGES IN TIME: RESULTS OF A 
SPATIAL SUR MODEL 

Introduction To Space-Time Models 

A logical extension of the model in the previous chapter is to take time, as well as 

space, into account. Instead of simply looking at "snapshots in time" and comparing 

them, a time-series cross-section model can take into account the temporal as well as the 

spatial components of changes in air pollution reductions. This allows one to look for 

changes in the European nations' behavior over the course of several years. The changes 

over time in the coeflBcients and standard errors of a variable in the regression allow one 

to judge whether there have been changes in that variable's impact over time and whether 

these changes are significantly different fi-om one year to the next. As in chapter 4, a one-

tail test using the cumulative normal distribution with a = 0.10 is used to test for 

significance of the coeflBcients. The one-tail test is used because the theory underlying the 

models used in chapters 4 and 5 indicates the expected signs for each of the variables. 

This new model will allow me to examine several questions that could not be asked 

using the models in the last chapter. First, have nations behaved less strategically as time 

has passed? Specifically, have the nations behaved more or less cooperatively after the 

signing of either the Helsinki or Sofia Protocol? Second, has new scientific knowledge of 

environmental and health effects of sulfur and NO* depositions over the last decade caused 

nations to alter their behavior during the 1980's? Third, have income and political 

fi'eedom become more significant determinants of emission reduction over time and has 
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the magnitude of their influence on emission reduction changed? Fourth, are nations that 

ratify a protocol sooner rather than later more likely to make voluntary emission 

reductions than nations who ratify the protocol later? Fifth, does the size of the target 

level of emissions play less of a role in voluntary emission reductions as the years pass? 

And sixth, did the marginal cost of emission reduction play a more significant role in 

voluntary reductions in the years following the ratification of the Helsinki and Sofia 

Protocols? 

Some of these questions can be answered but some others cannot. A confident 

answer to any of the questions depends on how significant the coeflBcients are. As before, 

many of the variables in the sulfiir model give consistent results and are significant. 

However, the NOx model results do not provide definite answers to many of the questions, 

since the coefBcients are often not consistent over time and lack significance. Clearly, 

there is room for future research on these questions. 

Before looking at the results, a model must be found that can account for both 

spatial and time series components. In looking for a model, one of two approaches can be 

chosen. First, models that analyze both cross-section and time-series data can be modified 

to take account of spatial correlation and spatially lagged dependent variables, or second, 

a spatial autoregressive model can have a time component added to it (Stofier, 1985; 

1986). The two approaches are not mutually exclusive, but only a convenient way to 

examine a variety of models. For reasons discussed in the theoretical section, I choose the 

Spatial Seemingly Unrelated Regression (Spatial SUR) model discussed by Anselin 
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(1992), which is suited to investigating Nash behavior. For increased explanatory power, 

it includes a spatially lagged dependent variable with the coefGcients of the explanatory 

variable allowed to vary across time but held constant in space. 

The body of this chapter consists of five sections. The next section discusses how 

the theoretical model of the previous chapter can be changed to incorporate a time-series 

component. The following section consists of a brief summary of econometric models that 

are used for panel data sets and how they can be modified to deal with spatial 

autocorrelation. In the ensuing section, the model is discussed. The fourth section 

examines the empirical results fi'om the regressions and the concluding section is devoted 

to contrasting the results from the two models and what can be learned from the results. 

The Theoretical Model 

The theoretical model for the last chapter was used to examine two distinct periods 

of time for the sulfiir and NO* models. Although these periods of time were determined 

by the signing dates of the Helsinki and Sofia Protocols, the data for SO2 and NO* 

emission reductions is continuous from 1985 on. Therefore, it is possible to make a more 

complete use of the data. One way to do this is to develop another spatial econometric 

model that can handle panel data (i.e. cross-section time-series data). 

There are several complications m extending the theoretical model of the previous 

chapter so that it can handle time-series and cross-section data. The model, as before, is 

based on a Nash subscription model that explains voluntary and nonvoluntary emission 

reductions of SO2 and NO*. Emission reductions are treated as impure public goods and 
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all countries in the model are assumed to be both emitters and recipients of these 

emissions. Again, all countries benefit to varying degrees from emission reductions in 

their own country and from other countries' emission reductions. Each country is assumed 

to maximize the welfare of its own citizens each year and ignore welfare efifects on citizens 

of other countries. 

But the new model requires the consideration of other factors that did not come 

into play in the earlier models. Naturally, the utility function is of the same form for each 

one year period as it is for the longer periods of time used in the last chapter. But should a 

nation be expected to maximize utility by discounting future benefits and costs? The 

utility of future GDP and emission reductions is less than the utility derived from current 

ones. On the other hand, the net present value of emission reductions today is greater 

than the net present value of emission reductions a year from now if costs are held 

constant. To maximize utility over several years, one must consider using net present 

value, discounting future costs and benefits. 

The information needed to solve an intertemporal optimization problem requires 

data beyond the scope of what is now available. It would be necessary to know which 

nations first proposed the pollution control treaties and the requirements. Each nation 

also places different estimates on the uncertainty of future pollution control technology 

and evaluates the likelihood of damage to its forests and buildings differently. Finally, one 

would need to know a nation's estimate of future emissions from other countries and if 

any had formed possible strategies for punishing treaty defectors. 
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Fortunately, I am working with regression models that deal only with short, 

discrete periods of time. This means less concern needs to be placed on the issues of 

discounting, uncertainty, and intertemporal optimization. Because a nation's decision on 

emission reductions is reversible, less weight needs to be placed on the questions of utility 

from fiiture levels of GDP or the utility of future emission reductions, compared to models 

which cover long periods of time, and when decisions are assumed not to change. 

In addition, several of the independent variables do not change significantly during 

a year. Nations categorized as FREE did not change between 1980 and 1989, while the 

integer value of civil and political liberties is constant for most countries during this time, 

at most changing by only one or two points. The percentage of a nation's land classified 

as forest and the percentage of the population classified as urban, changes even less. 

Finally, because of the short decision periods, uncertainty with regards to: 1) 

depositions fi-om other countries, 2) future costs of pollution control, and 3) the impact of 

pollution control on GDP, are not expected to have significant effects in the model. 

A reasonable hypothesis is that all nation's voluntary emission reduction decisions 

can be made yearly. Therefore, decision makers need only concern themselves with 

current variables when making their utility maximizing decision. This is a reasonable 

assumption because emission reduction decisions are unlikely to be based upon future 

estimates of GDP, future marginal costs, or future spillins fi"om other countries since the 

decision makers expect to have the opportunity to make another decision in one year. 
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Therefore, for current work, the same theoretical model (with small modifications 

in notation) is appropriate. The utility function of the i"* nation at time t is assumed to be 

strictly increasing and quasi-concave and can be written as 

represents the i"* nation's emission reductions for that year. It follows then that the term 

Oiiqit represents the benefits, in terms of emission reductions, that nation i receives in time 

t by reducing its emissions by qit. Likewise, Qj^ represents the benefits or "spillins" to 

nation i during time t resulting fi-om emission reductions in all other nations. Finally, Eit is 

a vector of environmental and political factors in nation i at time t. 

Voluntary reductions for coimtiy i at time t are calculated the same way as in the 

previous chapter as are the OiiS and OijS. Each nation faces the same budget constraint for 

each period, 

mit = yit + pitqit (5.2) 

and qit consists of both voluntary q|[ and nonvoluntary qj^ emissions. The maximization 

problem for country i at time t now becomes 

Uit = Uit (yit, Oiiqit + Qit, Eit), 

where yit is the i"" nation's consumption of the private numeraire good at time t; qit 

(5.1) 

a 

m^ UitEyit, aii(q;; + q?") + (qj +qj), Eit] 

(5.3) 
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The solution to the maximization problem is again based on the assumption of Nash 

behavior by each nation so that each nation chooses its best response given the spillins 

from other nations, Qjj.  

From the first-order conditions of the optimization problem, I can express the i"* 

nation's demand for , in terms of the exogenous variables, as 

qa =qft[mit.Pft>au.E,t .  ioti jCq^+qj).qn. forqT>0, (5.4) 
j*i 

and 

n — 

qft =qft(mit.pH>an.Eit ,Zaij-qJ),  forq>=0. (5.5) 
j*' 

As before, my model is based on the empirical representation of the demand 

equation in (5.4), since the demand equation in (5.5) is a special case of (5.4). This 

equation applies to each country in the region for each time period, t. Again, a Taylor 

series expansion of (5.4) is necessary to develop a model that can be empirically tested. 

For simplicity, I rewrite (5.4) in a more general form as 

q^ = f(xiit, xai,..., x„u,), (5.6) 

where m equals the number of explanatory variables. Using equilibrium values, eut, e2it, 

..., emit, as expansion points, the resulting Taylor series becomes, 

j=l ' 

T 21 ~ ®kit) (5-7) 
2 k = i  i = i  "  J *  

with f = f(eiit, eat,..., emit). This can be simplified by keeping just the linear terms, giving 
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m 

qft = Pot + 2P jtXjit + remainder, 
j=i 

(5.8) 

^ ® a*** a^* 

wherePo = r-Z^(eiit)and 3jt= Therefore, using the original variables of (5.4), 

the linear approximation of the i*** nations demand function for becomes; 

Qit ~ Pot "^Plt®it PaPit Pst^^ii P4t^it 

+ Pt 20Cij(q^ + qj) + y^qj + Si,. i = 1,n (5.9) 

where Pot is a constant, Pu, Pa, Pat, P4t, Pt and jt are coeflBcients, and Sit is an error 

(remainder) term. 

However, the result is more complicated than the previous chapter. Therefore, I 

will first give a brief review of space-time models which should help in understanding how 

to use the resulting Taylor series to construct an econometric model. 

where q was a 25 x 1 vector of countries. A was a 25 x 25 matrix of spatial weights with 

the diagonal elements = 0. The coeflBcient for the A matrix was p, while X was a 25 x k 

matrix of independent variables and P was a k x 1 vector of coeflBcients. The error term, 

8, was a 25 X 1 vector of normally distributed error terms. 

The autoregressive model can be written in identical mathematical form to the 

spatial autoregressive model as, 

Econometric Review of Space-Time Models 

The spatial autoregressive model used in the previous chapter was of the form. 

q = pAq + Xp + 8. (5.10) 
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q = yLq + X3 + e. (5.11) 

Here, L is a t x t matrix of time lags (with the diagonal elements = 0) for the dependent 

variable q, which consists of t observations, and y is the weight placed on each of the time 

lags.' Notice that the classical linear regression model can be obtained by setting either p 

ory = 0, giving, 

When the time dimension is added to the classical linear regression model (5.12), 

the result is the space-time model used for panel data studies. 

where qit is the dependent variable for nation i at time t, Xit is a vector of observations, Pu 

is a vector of coeflScients, and en is the error term with E[eit] = 0 and E[eitej,] ^0. In this 

model the error covariance matrix can take on different forms depending on whether i = j 

or t = s. Each case is summarized in Table 5.1. 

In order to completely specify the spatial econometric model, some decision must 

be made about the form the error term will take. The most common method is to unpose 

constraints on the error term, but to insure that the constraints are not arbitrary, model 

specification tests should be used to help determine if these constraints are appropriate 

(seeAnselin, 1988). 

' In the spatial autoregressive model, p is commonly a single element so that each nation is treated 
identically, but in the autoregressive model, the codScient for each time lag is expected to be different. 
Therefore, the model is more often written with yt', which is a 1 x t vector of weights for each time lag. 

q = X3 + e where e ~ N(0, a^). (5.12) 

Qit X itPit "f" Bit, (5.13) 
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Table 5.1. Different Cases of the Error Covariance Matrix for the General 
Spatial Autoregressive Model 

t = s 

constant variance 

E[E4^]=a2. spatial heterogeneity 

i = j  

E[en'] = a't 

time-wise 
heterogeneity 

space-time 
heterogeneity 

E[ei,ej,] = ff^o(i) time-wise 
correlation 

E[ErtE^] =CT^jj(t) contemporaneous 
correlation 

E[Ei,8j.] = <y^ij(s) space-time 
correlation 

Several types of space-time models can be obtained from (5.13) by constraining P 

across space and/or time. If P is constrained across space and time, then 

qit = lit 3 Sit (pooled cross section time series model). (5-14) 

If however, p is constrained across time, 

qit = lit Pi + Sit (SUR model). (5.15) 

For P constrained across space, the result is: 

qit = lit Pt + Bit (Spatial SUR model). (5 16) 

Finally, adding a spatially lagged dependent variable to the spatial SUR model, gives 

qit = ptAqt + Xit'Pt + Eit. (5.17) 

The above cases are summarized in Table 5.2. 
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Table 5.2. Space-time Models derived from the General Spatial Autoregressive 
Model 

P unconstrained P constrained 
across time across time 

P unconstrained 

no spatially lagged 
dependent variable 

Qit = X'iPit + Eit 

(general model) 
q.t = x'i,Pi + ei 

(SUR model) 

across space with a spatially 
lagged dependent 

variable 

qit = pitAqit + x'i,Pit + eii qit = p, Aq, + x'iP, + Sit 

p constrained 

no spatially lagged 
dependent variable 

qii = *'itPt + Sit 

(spatial SUR model) 
Qit = X'itP + 

pooled cross-section 
time-series model 

across space 
with a spatially 

lagged dependent 
variable 

qit = pt Aqt + x'itPt + Bit q^ = p, Aqt + x',,P + e.t 

Equation (5.17) is the most appropriate model for my purposes. Although further 

modifications to this spatial model are possible by constraining the coefficients and/or 

intercepts, I will use the model without any additional constraints. 

The Spatial SUR Model 

To make the concepts easier to understand, I will apply the spatial SUR model 

with a spatially lagged dependent variable (5.17) to a data set with n nations and two time 

periods. The model can be written out as: 
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0 • 

0 a.12 • •  

Pt, 0 • 
0 

0 •• Ctjn 

0 Pt.. 

P-nl o-xa 0 

% X. 0 p.. St.  

1 

o
 1 K St, 

(5.18) 

where q^. is an n x 1 vector of dependent variables at time tj, is an n x k veaor of 

independent variables at time ti, Pt, is a k x 1 vector of coefficients for the independent 

variables in each time period (the number of independent variables may also be different in 

each time period), and St. is an n x 1 vector of error terms. 

The Kronecker product of the p and A matrices allows a different weight to be 

placed on the A matrix during each time period. It is also possible that the A matrix may 

be different for each time period. This will not occur when the weights are based on 

distances between countries, but for the model I am using, the spatial weight matrix is 

based partially on meteorological conditions that vary from year to year. Spatial weight 

matrices have been developed for each year by the Norwegian Meteorological Institute. 

Fortunately, one can use a single spatial weight matrix averaged over time since countries 

do not know in advance what that year's matrix will be. They will instead make their 

decisions based on the expected spatial weight matrix. Furthermore, the spatial weight 

matrices are virtually identical from year to year when expressed as percentages rather 

than as tons of the pollutant. 
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My spatial SUR model uses data from 25 countries and six time periods. 

Therefore, the demand equation for voluntary emission reductions given in (5.9) can be 

written more precisely as, 

n 

qft = PtZttij (qjt ) + Pot + Pum; + Papi + PstOu + P4tEi + y t q j  +  Sit 
j*« 

i ,  j  = 1,. . . ,  25 and t= 1980, 1985, 1986,. . . ,  1990 (5.19) 

where Pot is a constant, Pus are coefficients, sitis an error term, and pt and Vt are also 

coefficients. If (5.19) is written in vector notation, the result is, 

0 0 ' 

. . .  0  
. 0 

qt« 

Pt. 

0 Pt, 

0 0 

0 ai2 
ttji 0 

®I25 

<*225 

"251 ®252 

qt", +q^ 

qt", +q^ 

qt' +q'^ 

X,, 0 ••• 0 \K' 0 . . .  0  q" 
0 X,, 0 K + 

0 Ytj 0  q^ 
+ 

0 0 X,. .K 1 

0
 

0
 1 1 

' ^c
r 

• 

(5.20) 

and can be solved through the use of maximum likelihood estimation. 

Empirical Model 

I again expect that the demand for emission reductions given in equation (5.4) is a 

good explanation of the European nations' behavior during the 1980's with regards to 

SO2 and NOx reductions. However, more observations on the explanatory and dependent 
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variables will be needed than in the "snapshot" models of the previous chapter in order to 

test this hypothesis and construct an econometric model. 

In my model the P,. will have different numbers of explanatory variables since the 

date the Helsinki and Sofia Protocols went into force adds an emissions target variable 

(for the sulfur model), and a variable indicating protocol ratification (similar to the 

variables added to the post-Helsinki and post-Sofia models in chapter 4). With the 

exception of the dependent variable and the cost of emission reductions variable, the 

variables in the spatial SUR model are the same as those used in the earlier spatial 

autoregressive models, but cover more time periods. 

Variable Definitions 

Measures of cxnd qj 

Yearly emissions of SO2 and NO* are again from Tuovinen et al., 1994. The target 

level of reductions, , is calculated in the same way as before. Under the Helsinki 

Protocol it is 0.3 x S80 (30% of 1980 sulfur emissions), but there is no target for NOx 

emissions. Voluntary emission reductions for sulfur are calculated as follows: for the 

1980-85 period they consist of the difference between the 1980 emissions and the 1985 

emissions, S80 - S85, and for the other periods they are the emission target level minus 

that year's emissions, i.e. qlJ = 0.7 x S80 - SYY (where YY = time period t)). Voluntary 

reductions for NO* are calculated by subtracting current year emissions from previous year 
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emissions (except for the 1980-85 period where it is N80 - N85). Then a two-year 

moving average is taken of these values because the results of the regressions using the 

raw reduction data were unstable from one time period to the next. 

Measures of pu 

The cost of emission reductions is proxied by per capita consumption of fossil fuels 

because there is a possibility of an endogeneity problem over a several year period since 

the amount of emission reductions may influence the cost of emission reductions. For 

sulfur, I use the per capita consumption of solid, liquid, and gaseous fossil fuels, PCC-

FUEL, and for NO*, I use the per capita consumption of liquid fossil fiiels, PCC-LIQ. 

This data comes from the 1979 and 1988 United Nations' Yearbook of World Energy 

Statistics, which is published each year. PCC-FUEL is used in place of MCSUL and 

PCC-LIQ is used instead of MCNOX, used in the previous chapter. 

Measures of nti, Uu, Q,, Et 

These explanatory variables come from the same sources as those used in the 

previous chapter. However, consecutive years will be used for some of the variables.^ 

Tables 5.3 and 5.4 summarize the dates of the explanatory variables for each time period 

used in the Sulfur and NO* models. 

^ Additional data for FREE comes from McColm (1991). 
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1989 
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1990 
1980 
1989 
1990 
1985 

1989-90 

1989-90 
1989 
1990 
1985 
1990 
1990 
1990 
1985 
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Dates of the Explanatory Variables for the Sulfur Regression 

1980-85 1986 1987 1988 1989 

1980-85 1986 1987 1988 1989 
1983 1985 1986 1987 1988 
1983 1985 1986 1987 1988 
1985 1985 1985 1985 1985 
1985 1985 1987 1988 1989 
1980 1980 1980 1980 1980 
none none 1986 1987 1988 
1985 1985 1985 1990 1990 
1985 1985 1985 1985 1985 

Dates of the Explanatory Variables for the NOz Regression 

1980-85 1980-86 1986-87 1987-88 1988-89 

1980-85 1980-86 1986-87 1987-88 1988-89 
1983 1985 1986 1987 1988 
1983 1986 1987 1988 1989 
1985 1985 1985 1985 1985 
1980 1985 1987 1988 1989 
none none none none 1989 
1985 1985 1985 1990 1990 
1985 1985 1985 1985 1985 
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Empirical Results 

Sulfur 

Table 5.5 displays the results of the sulfur regressions. Four of the five post-

Helsinki results (1986-90) confirm the subscription model. The coeflBcients on the SPILL 

terms indicate that for every 1 kiloton (kt) decrease in voluntary regional emission spillins 

to a nation,^ that nation, on average, decreased its voluntary emission reductions of sulfur 

(SO2) by 210 tons in the 1987 period, by 540 tons in the 1989 period, and by 760 tons in 

the 1990 period. 

Each year that passes appears to have increased the degree of fi-ee-riding among 

nations, since the SPELL coeflBcient is becoming increasingly negative. The estimated 

coefBcient for the 1989 SPILL term is significantly more negative than the 1988 SPILL 

term and is significantly less negative than the 1990 SPILL term. It appears that as time 

passed, the European countries engaged in more fi-ee-riding behavior. In other words, 

strategic behavior and fi^ee-riding increased in the years following the signing of the 1985 

Helsinki Protocol. This conclusion runs counter to the general view that international 

treaties governing air pollution are a sign that nations are cooperating with each other. 

Unfortunately, no firm conclusions can be formed about behavior before the signing of the 

protocol since the coefBcient is not significant for the 1980-85 period. 

^ The terminology is awkward because the dependent variable is voluntary emission reductions, but the 
which are used in calculating the SPELL coefficient are based on total depositions in the 25 nations. 
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Table 5.5. Maximum Likelihood Estimates of the Spatial SUR Model for 
SO2 Emission Reductions (Z-values in Parenthesis) 

1980-85 1986 1987 1988 1989 1990 

SPILL 0.01 -0.07 -0.21 -0.23 -0.54 -0.76 
(O.IO) (-0.91) (-2.82) (-2.18) (-5.82) (-5.56) 

GDP 0.99 1.23 1.34 1.77 1.87 1.40 
(2.85) (3.37) (3.97) (4.38) (5.27) (4.72) 

PCC-FXJEL -O.IO -0.10 -0.10 -O.ll -0.07 -0.03 
(-4.75) (-5.06) (-5.31) (-5.20) (-3.96) (-1.32) 

OWNSUL 15.03 11.77 16.97 7.31 10.61 23.03 
(0.76) (0.56) (0.89) (0.36) (0.60) (1.61) 

FREE 50.04 48.83 57.31 41.99 49.56 54.69 
(3.17) (2.96) (3.85) (2.51) (3.18) (3.76) 

TARGET -0.98 -1.02 -1.07 -1.08 -0.81 
(-11.45) (-9.83) (-5.60) (-6.03) (-4.68) 

HELSINKI 54.87 78.37 112.51 205.46 
(5.71) (2.61) (3.17) (2.93) 

URBAN 4.73 2.55 2.53 4.94 2.10 0.54 
(1.43) (0.82) (1.24) (2.90) (1.14) (0.19) 

PFOREST -0.91 0.89 0.02 3.27 3.24 -0.30 
(-0.13) (0.1I) (0.00) (0.44) (0.46) (-0.06) 

CONSTANT 174.27 312.84 199.01 154.49 120.72 -232.97 
(0.41) (0.74) (0.54) (0.41) (0.40) (-0.73) 

-Log Likelihood 887.03 887.03 887.03 887.03 887.03 887.03 

R2 0.73 0.73 0.73 0.73 0.73 0.73 

Notes: Only one Maximum Likelihood Estimate and one is reported for the model, because a spatial 
SUR regression does not generate separate MLEs and R^s for each time period. 
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GDP is positive, significant and is increasing each year, except the 1990 period, 

but the increases are not statistically significant fi-om one year to the n®ct. However, 

comparing periods over several years does show significant changes. The 1988 and 1989 

periods have GDP that is significantiy higher than the 1980-85 and 1986 periods. This 

implies that the contribution of GDP to SO2 emission reductions increased over the 

decade. In the 1980-85 period, every $1 billion increase in GDP resulted, on average, in a 

reduction of 990 kilotons of SO2 emissions. Four years later, in the 1989 period, the 

contribution of GDP almost doubled. In that period every $1 billion increase resulted in 

1,870 kilotons of volimtary reductions of SO2 emissions. 

It is a bit more difficult to tell a story about the roll of the cost of emission 

reductions for SO2. PCC-FUEL is negative and significant in five of the six periods, but 

none of them are significantiy different fi-om each other. Ceteris paribus, a 1% increase in 

the amount of fossil fiiel used per capita, resulted in a 100 ton decrease in emissions 

reductions during the first three periods (1980-85, 1986, and 1987), a 110 ton decrease in 

the 1988 period, and a 70 ton decrease in the 1989 period. Over the 1980's then, it 

appears that the "cost" of emission reduction played a stable role in determining a nation's 

level of volimtary emission reductions. 

OWNSUL is positive as expected for all periods but only marginally significant in 

the last period (1990). The value of the coefficients are all of the same magnitude 

averaging between 7 and 17 kt (except in 1990). A tentative hypothesis then would be 
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that the percentage of a nation's emissions landing on itself played a marginally positive 

role in reducing emissions. 

FREE is positive and significant in all periods. On average, a free country reduced 

its SO2 emissions between 42 and 55 kt more than a non-free country for each one unit 

increase in its civil and political liberties. Therefore, the most free countries (those with 

values of 2) had regional emissions 300 kt less, on average, than non-free coimtries 

(values of S)."* There is no significant diflFerence in the coeflBicients during the period under 

study, so it appears that political and civil liberties played a relatively constant role in 

influencing a nation's SO2 emission reductions during the 1980's. 

Likewise, the nation's required level of SO2 emissions for 1993, TARGET, is 

significant in all periods but displays no significant diflFerence between periods. Ceteris 

paribus, a one kt increase in TARGET resulted in decreases of voluntary emissions of 

between 0.81 and 1.08 kt. WTith the exception of the 1986 period and the 1990 period, the 

mandated target decreased volimtary reductions by more than one-to-one. But none of 

the estimated coeflBcients are significantly different from one. Surprisingly, there is no 

significant diflFerence in the European nations' behavior regarding their target emission 

levels over time. One would expect that the closer a nation came to achieving its target 

level, the more likely it would be to make more voluntary reductions. Therefore I 

expected to see the coefiBcient for TARGET become less negative in each time period. 

* Since FREE takes on a value between 2 (most firee) and 14 (most unfiee). The nations with a value of 2 
contributed about 100 kt (50 kt x 2) to sulfiu: emissions while a nation with a rating of 8 would contribute 
about 400 kt (SO kt X 8) to sulfur emissions. Therefore, 300 kt is the difference between the two. 
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Instead, there was a gradual increase in the negative value up until the 1990 period, when 

the coefBcient suddenly dropped to -0.81 (the largest change of any time period). 

However, no definite conclusion can be drawn fi'om this drop, because the change in value 

was not quite significant. On the other hand, the drop in the Z values fi'om -11.45 in the 

1986 period to -4.68 in the 1990 period indicates that there is more variation in voluntary 

reductions due to the influence of TARGET in the later periods. This could mean that 

some of the nations are behaving as one would expect as the target level is approached. 

The ratification of the Helsinki Protocol made a country much more likely to 

reduce its voluntary emissions. Also the earlier a nation ratified the Helsinki Protocol, the 

more likely it was to make voluntary SO2 emission reductions. Interestingly, the voluntary 

reductions in the first year after a nation ratified the protocol were greater for nations that 

joined later. This is shown because the coefBcients increase over time and are significantly 

different fi'om each other in three of the four periods. Nations that ratified the protocol in 

the year following its adoption (1987) made voluntary reductions 54.87 kt greater, on 

average, than nations that did not ratify that year. But in the 1990 period, nations that 

ratified the protocol, made voluntary reductions 205.46 kt greater than those that had still 

not ratified the treaty. However, it is important to note that a nation that had ratified the 

protocol three years previously (1987) was now making voluntary reductions of 821.84 kt 

more than the non-ratifying nations and 616.38 kt more than nations that ratified it that 

year.® 

^ HELSINKI is an integer variable that changes from 0 to I when a nation ratifies the protocol and then 
increases by one for each year that follows. Therefore a nation that ratified the Helsinld Protocol in the 
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While health and environmental effects are theoretically appropriate in determining 

a nation's level of emission reductions, the proxy variables, PFOREST and URBAN do 

not appear to have significant explanatory power. As predicted, URBAN is positive in all 

periods but is significant in only the 1988 period. While not much importance should be 

attached to one significant time period, the interpretation of it is straight forward. A one 

percent increase in a country's urbanized population resulted in a 4.94 kt increase in 

voluntary emission reductions of SO2. But PFOREST is not significant in any of the 

periods. Therefore, it appears that during the 1980's, nations did not significantly take 

into account the eflFect of SO2 emission reductions on their forests or urbanized 

populations. In order to obtain more evidence for the above conclusion, another model 

was run without URBAN and PFOREST. Using the results (unreported) of this model 

and the results of the reported model, I calculate two tests appropriate for nonlinear 

regressions. The first is the Asymptotically Valid F Test which is used to test whether the 

inclusion of PFOREST and URBAN significantly improved the fit of the model. The 

resulting F[i2.93i gave a value of 0.76 which was well below the 95-percent critical value of 

1.86. Therefore, the hypothesis that there is not a significant difference between the 

models cannot be rejected. The F distribution is only approximate because neither the 

numerator nor denominator posses the necessary chi-square distribution since the models 

are nonlinear. The second test, the Likelihood Ratio Test, gave a similar result with a 

1987 period has a value of 4 in the 1989-90 period. Therefore the calculations were as follows: 821.84 = 
(4 X 205.46) and 616.38 = (821.84 - 205.46). 
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value below the 90-percent critical value (18.55) of the chi-square distribution with 12 

degrees of freedom (i.e. 12 restrictions -- 2 variables covering 6 time periods).® 

Nitrogen 

As in the previous chapter, the NO* model offers less support for the theoretical 

model than the sulfur model (the results are reported in Table 5.6). Because the results of 

the regressions for one-year periods varied so much, I used two year moving averages of 

the available emissions data. Six periods resulted: 1980-85, 1980-86, 1986-87, 1987-88, 

1988-89, and 1989-90. 

The 1988-89 time period is substantially different from the periods coming before 

and after it, so I am reluctant to draw any conclusions using it. The coefficients for GDP, 

OWNNOX, and PFOREST were significant in the 1987-88 and 1989-90 periods but not 

significant in the 1988-89 period. Conversely, FREE was not significant in either of those 

periods but was significant in the 1988-89 period. Furthermore, URBAN also displayed 

unusual behavior in this period when comparing it with the previous period. 

There are no significant political or economic events that occurred during this 

period that would explain the difference in the estimated coefficients for only the NO* 

regression. The European economy was slowing down during this period because GDP, 

in the countries under study, declined (on average) from 3.6% in the 1987-88 period to 

3.0% in the 1988-89 period. It fell even fiirther in the 1989-90 period to 2.3%. Therefore 

® The maximum likelihood estimate of the regression without URBAN and PFOREST was -893. So X = 
-2(-893 - (-887)) = 12. 
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Table S.6. Maximum Likelihood Estimates of the Spatial SUR Model for 
NOz Emission Reductions (Z-values in Parenthesis) 

1980-85 1980-86 1986-87 1987-88 1988-89 1989-90 

SPILL -0.51 -0.53 -0.49 -1.00 -0.98 -0.41 
(-4.59) (-4.78) (-4.38) (-7.40) (-3.95) (-1.84) 

GDP 0.02 0.04 0.05 0.92 0.05 0.18 
(0.49) (2.15) (3.89) (9.78) (0.37) (2.36) 

PCC-LIQ 0.001 (0.001) 0.000 0.015 -0.030 -0.012 
(2.69) (1.11) (0.01) (3.82) (-0.97) (-0.78) 

OWNNOX -3.25 -8.02 -10.37 -12.89 -0.26 -12.05 
(-1.17) (-6.02) (-9.71) (-7.68) (-0.04) (-2.82) 

FREE 1.79 1.44 1.26 0.32 12.28 4.65 
(3.61) (4.17) (3-41) (0.36) (2.95) (1.12) 

SOFIA -24.90 -19.22 
(-0.81) (-1.11) 

URBAN 0.90 0.11 -0.29 -0.77 2.69 1.49 
(0.76) (0.24) (-1.54) (-2.75) (1.40) (1.30) 

PFOREST 0.66 1.28 1.60 1.97 1.32 2.53 
(0.49) (1.97) (2.85) (2.23) (0.64) (2.00) 

CONSTANT -52.19 -4.14 19.87 31.11 -162.05 -64.01 
(-0.56) (-0.11) (0.89) (0.89) -1.10 -0.71 

-Log Likelihood 648.00 648.00 648.00 648.00 648.00 648.00 

R^ 0.37 0.37 0.37 0.37 0.37 0.37 

Notes: Only one Maximum Likelihood Estimate and one is reported for the model, because a spatial 
SUR regression does not generate separate MLEs and R^s for each time period. 
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neither economic growth nor decline appear to explain the differences among the 

coefficients over the tune periods in question. 

The SPILL terms are all negative and significant in each period, implying that fi-ee-

riding also occurs with NO* emission reductions. Between 1980 and 1987 a nation 

appears to have increased its emissions about 500 tons for every 1000 tons of reduced 

NOx depositions that fell on its soil. This free-riding doubled in the 1987-88 and 1988-89 

periods as nations increased their own voluntary emissions of NO* by 1 ton for every ton 

of reduced spillins. However, in the last period (1989-90), the fi-ee-riding appeared to fall 

back to around its old level with each nation increasing its emissions 410 tons for each 

kiloton decrease in voluntary spillins. 

There is a significant difference in the coeflScients of three groups: the 1980-87 

group, the 1987-89 group, and the 1989-90 period. It appears that shortly before the 

Sofia treaty came into force (1988), nations began to behave less cooperatively than they 

had in the 1980-86 period, but then returned to their old pattern of behavior in the 1989-

90 period. I can think of no obvious explanation for this behavior. 

GDP tells a story somewhat different story fi-om the simple model of chapter 4. 

Here two of the three pre-Sofia coefScients for GDP are positive and significant, as is 

GDP in the post-Sofia period (1989-90). In the two periods between 1980 and 1987, 

every $1 billion increase in GDP resulted in between a 40 and 50 ton increase in NO* 

emission reductions. However, in the 1989-90 period a $1 billion increase in GDP, ceteris 

paribus, resulted in a three times greater increase (180 tons) in emission reductions. This 
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is a significant increase over the 1980-86 and 1986-87 periods but significantly under the 

1987-88 period. A tentative conclusion drawn fi'om these results is that GDP does appear 

to play a significant positive role in NOx emission reductions during the period of study 

but it cannot be determined whether this role is increasing in magnitude as it did in the 

case of SO2 emission reductions. 

PCC-LIQ is positive but near zero in the first three periods, but in the last two 

periods it becomes negative, although not significant. The per capita consumption of 

liquid fossil fiiels was used as a proxy variable for the cost of reducing NOx emissions, but 

the results are similar to those of the simple models in the last chapter which used actual 

marginal costs of emission reduction. The coefBcients were positive but not consistently 

significant in the pre-Sofia periods but became negative, though not significant in the post-

Sofia periods. Therefore, I come to the same conclusion as I did in the last chapter; it 

appears, that cost was not a consistently important fartor in decisions of NOx emission 

reductions during the period under study. However there are subtle hints that cost is 

beginning to be taken into account. 

OWNNOX is negative in all periods but there does not appear to be a consistent 

pattern to the results. I had hoped that this new model would help explain the unexpected 

OWNNOX results fi'om the last chapter, but the puzzle still remains because these new 

results are similar to the old results, showing negative values which are sometimes 

significant and sometimes not. I therefore feel that no conclusion can be drawn about the 
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relationship between the amount of NOx depositions and the European nations' decision to 

reduce NO, emissions. 

Political and civil liberties, indicated by FREE, had a positive and significant 

influence on emission reductions in four of the sbc periods under study. This gives support 

to the belief that environmental quality (indicated by both reductions in sulfur and NO* 

emissions) is responsive to the degree of political fi^eedom of a nation's citizens. In the 

1986-87 period, the most fi"ee nations made emission reductions that were more than 

7,560 tons greater than the non-fi-ee nations.' But there is no clear pattern of change in 

the coeflBcients' values over time. The pre-Sofia periods give consistent estimates for 

FREE but in the post-Sofia period, the results break down, giving an insignificant value 

followed by a large significant value, then by another insignificant value. These results can 

be contrasted to the results of the previous chapter, in which the FREE coeflBcients were 

negative but marginally significant in the pre-Sofia period, but then followed by positive 

but not significant values in the post-Sofia period. Therefore I am again reluctant to draw 

any conclusions beyond my belief that this model presents evidence that NO* emission 

reductions are more likely in countries with stronger civil and political liberties. 

The proxy variables for environmental and health eflfects of emission reductions 

(PFOREST and URBAN) displayed mixed resuhs. While, URBAN displayed both 

positive and negative values, PFOREST performed better. It was positive in all periods. 

^ The FREE variable is the same as that used in the suliiir models with a value that ranges between 2 and 
14. The freest nation contributed 2.52 kt (1.26 x 2) of NO* in the 1986-87 period, while a nation with a 
rating of 8, contributed 10.08 kt (1.26 x 8) of NO* (7.56 = 10.08 - 2.52). 
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and significant in four of the six periods. Ceteris paribus, each 1% increase in the land 

area classified as forest resulted in an extra 1.6 kt decrease in NOx emissions in the 1986-

87 period and a 2.53 kt decrease in the 1989-90 period. It appears that, at least for NO* 

depositions, nations were cognizant of the possible damages their forests might experience 

and took that into consideration when making decisions on emission reductions. 

This result is different than the suliiir model, in which it appeared that urbanization 

rather than the percentage of forest, played a role in determining a nation's SO2 emission 

reduction decisions. The difference is somewhat surprising because NOx is a major 

component of ozone, a common problem in cities, while the damage done to forests by 

acid rain and sulfiir is better understood than the effects of nitrogen, which is also a plant 

fertilizer. 

The Likelihood Ratio Test gives confirmation of the usefiilness of including 

PFOREST in the model. Wthout PFOREST, the MLE was -655; with it, the MLE 

increased to -648.00.* Given sbc restrictions (one variable in six time periods) the Log 

Likelihood Test resulted in a value of 14 which is greater than the 95-percent critical value 

of the chi-square distribution of 12.59. Thus, there is a significant reason to reject the 

hypothesis that the models with and without PFOREST are identical. In addition, the 

inclusion of both PFOREST and URBAN resulted in a marginally better fitting regression. 

According to the Likelihood Ratio Test, I calculated a value of 18.88 which exceeded the 

90-percent critical value of 18.55. 

° Neither of the models that generated these estimates are reported. 
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Conclusion 

The explanatory power of the sulfiir model was almost twice as good as that of the 

NOx model. The sulfur model explained almost three fourths of the variation in SO2 

emission reductions, according to the R^, while the NO* model explained only 37%. 

Likewise, many of the estimated coeflBcients in the sulfur model were significant, but in 

the NO* model, there was a much smaller number of significant coeflBcients. Thus, many 

of my earlier questions can only be answered with reference to the sulfur model and some 

doubt remains if the answers are also correct in regards to the NO* model. 

Strategic or noncooperative behavior was apparent in both models as shown by the 

negative and significant values of the SPILL terms. In the sulfur model, the strategic 

behavior became more pronounced each year, even after the signing of the Helsinki 

Protocol. This indicates that fi-ee-riding off others voluntary SO2 emission reductions was 

common and growing stronger among the European countries in spite of treaties and 

protocols. Future treaties and protocols should take this into account when they are 

written so that the fi-ee-riding will be lessened. This could possibly be done by mandating 

higher individual target levels of reductions for each nation, so that there are few 

voluntary emissions for a nation to free-ride on. 

Income transfers among nations may also help to achieve a cleaner and healthier 

atmosphere because in both the sulfur and NO* models, GDP was positively associated 

with emission reductions. This effect was clearer, stronger, and generally increasing over 

time in the sulfur model but also positive and usually significant in the NO* model. Future 
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treaties that provide some incentive based system for emission reductions in the poorer 

countries may be able to achieve lower emissions at reduced cost. This will be especially 

true in the case of sulfur emissions which appear to be more strongly influenced by a 

nation's GDP. 

Encouraging movement away from fossil fiiels should lower SO2 emission levels 

among the European countries according to the sulfur model. Naturally, this conclusion 

reinforces what is akeady well-known. And the same can be said for liquid fossil fuels, 

since they are the predominant source of NO* depositions. Strangely, this obvious 

conclusion was not borne out by the results of the NO* model. Showing once again, that 

the unitary actor assumption of both models may not be so good at describing a nation's 

actions in regards to NO* emissions. 

The increase in political liberty that the citizens of the former communist bloc 

nations experienced beginning in 1989 bodes well for both SO2 and NO* emission 

reductions. The models mdicate that SO2 emissions should fall the most in those countries 

that have become more democratic, but there should also be a fall in the NOx emissions as 

well. Since this study ends at the time when the democratic transition began, I am 

interested in finding out if future studies can confirm this hypothesis. 

If future emission control treaties reward nations that join early, it may result in 

greater amounts of emission reductions over the following years. This wUl be especially 

likely to occur in regards to SO2 emissions, where the regression results show that early 

ratifiers of the Helsinki Protocol are more likely to make substantial reductions than the 
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later ratifiers. The same conclusion cannot be drawn in regards to NOx emission 

reductions, but that is not surprising as there were fewer periods of post-protocol behavior 

to examine. 

Perhaps the most important factor for future treaty writers to consider is the use of 

mandated emission reduction levels. While no firm conclusions can be drawn concerning 

the NOx model because of the late date of the treaty, the sulfur model indicates that 

emission targets may result in nations making a greater than one for one trade off in their 

mandated versus their voluntary emission levels. Furthermore, this effect did not diminish 

with the passage of time. If this conclusion holds true until the target date is reached, the 

result may be counter-intuitive. Namely, a treaty with mandated emission levels may 

achieve less emission reductions than a treaty that does not mandate set levels. 

The variables that are proxies for environmental and health concerns (PFOREST 

and URBAN) did not give consistently significant results. But a tentative conclusion is 

worth stating. It appears that forest cover exerted a stronger influence on NO* emission 

reductions than did urbanization but the reverse was true for SO2 emissions. This result is 

surprising because it is the reverse of what one expects based on current scientific 

knowledge of the chief recipients of the damage caused by NOx and sulfur depositions, 

cities and forests respectively. This tentative result needs further study to find out if it is 

true, and if so, whether nations are not taking current scientific knowledge into account, 

or whether there are other unknown reasons for their behavior. 

Finally, it is again clear, as it was in the last chapter, that the theoretical model 

explains SO2 emission reductions much better than NO* emission reductions. The reason 
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is most likely because the assumption of a unitary decision maker is not appropriate in the 

case of NOx emissions because NOx emissions come mainly from cars while SO2 comes 

mainly from large power plants. Thus another theoretical model appropriate for non-

unitary decision makers needs to be developed and tested to see if NOx emission can be 

better explained. 
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CHAPTER 6. CONCLUSION 

This chapter first summarizes the theoretical and empirical findings of my 

dissertation and analyzes how these findings contribute to an understanding of the Helsinki 

and Sofia Protocols. Second, the relevancy of these findings to the theoretical and 

empirical work in public goods, in general, and to models of impure public goods, in 

particular, will be discussed. Third, fiiture research areas the dissertation points toward 

will be examined. 

Summary 

Chapter 3 showed that impure public goods problems differ based on the good's 

public supply technology. In addition, the effect of differing spatial weight matrices 

(determined by the amount of private and public benefits of the good) was shown to be 

important in determining the pattern of payoffs in coordination games. This chapter also 

showed how the number of required participants, the degree of certainty, and the pattern 

of payoffs determined the outcome of coordination games among small groups and how 

this knowledge was relevant in understanding the current transnational problems of 

stratospheric ozone depletion, global warming, acid rain, and tropical deforestation. 

Chapter 4 developed a theoretical model, based on both Nash subscription and 

oligarchy choice, then empirically tested the model using spatial autoregression (with 

nonsymmetric spatial weight matrices) for SO2 and NO* emission reduction data fi-om 25 
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European nations. The results indicated that the nations exhibited strategic behavior for 

both SO2 and NOx emission reductions before and after the signing of the Sofia and 

Helsinki Protocols. The sulfiir model fitted the data best and showed that GDP, political 

fi-eedom, treaty ratification, and the percentage of emissions falling back on a nation's own 

soil had positive and significant influences on voluntary emission reductions, while the 

target level of emission reductions had a negative influence on voluntary SO2 reductions. 

However, marginal cost and proxy variables for the environment and human health did not 

play significant roles. 

A more advanced spatial SUR model was used in chapter 5. This model used 

yearly data rather than simply pre- and post-treaty data and allowed changes in the 

variables to be tracked over time. The empirical results supported the findings of chapter 

four and showed that strategic behavior occurred in every year before and after the 

protocols took effect. The results showed that nations decreased their reductions of NO* 

and SO2 in response to decreased depositions of these pollutants on their own soil fi^om 

neighboring countries. This strategic behavior appeared to be increasing each year, with 

regards to voluntary reductions of SO2, thus implying an absence of a cooperative 

response. 

GDP and political freedom performed as predicted in both models. Increased 

levels of GDP were positively associated with voluntary emission reductions of SO2 and 

NOx, and this effect was increasing over time in the sulfur model. Likewise, countries 

with greater civil liberties and political freedoms typically made greater voluntary emission 
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cutbacks compared with nations that had less freedom and civil liberties, but this result 

was again more pronounced and significant in the sulfiir model than the NOx model. 

The suliur and NOx models also differed in the significance attached to the 

estimated coeflBcients for treaty ratification and the proxy for the cost of emission 

reductions. In the case of the sulfiir model, the estimated coefficient for cost was negative 

and significant, but it was positive and significant for treaty ratification. In contrast, the 

results for these variables in the NOx model were not significant. Another difference was 

found between the estimates of variables for human health and the environment. 

Urbanization was more closely associated with reductions in SO2, while the percentage of 

a nation's land classified as forest appeared to have a more positive and significant effect 

in determining voluntary reductions of NOx. 

Therefore, the empirical results again showed that SO2 emission reductions were 

better explained by the theoretical model than were NOx emission reductions. One reason 

may be the number and sources of emissions. There are a few large emission sources for 

SO2, making them easier to control and monitor than NOx emissions which come fi-om 

many small sources (vehicles). The second reason may be that both models were based on 

the assumption of unitary actors. Although sulfur emission reductions appear to follow 

that assumption, nitrogen emission reductions do not, because legislation reducing NOx 

emissions does not usually apply to the majority of emission sources (such as older cars 

and trucks). 



www.manaraa.com

168 

Analysis of the Helsinki and Sofia Protocols 

My findings cast doubt on the belief that the Helsinki and Sofia Protocols led to 

true cooperation among nations. In chapter 3 I demonstrated that cooperation was 

unlikely to occur in large groups (such as the 25 nations under study) when efforts must 

be coordinated and there is uncertainty about the benefits arising fi-om the coordinated 

effort (as is the case with SO2 and NO* emissions reductions). The results of chapter 3 

and four gave support for this conclusion, because the coeflBcient, SPELL, was negative 

for both sulfur and NOx models indicating that nations were benefiting fi-om the emission 

reductions fi-om other nations ("spillins") and "easy-riding" by cutting back on their own 

emission reductions. This strategic, or noncooperative behavior, increased over time and 

was quite noticeable after the Helsinki Protocol took effect. 

The amount of Nash behavior displayed by the European nations runs counter to 

the general impression of the goals of emission treaties. In both sulfiir and NO* models, 

nations appeared to behave in a more strategic way. There was a clear pattern in the 

sulfiir model, but it was also apparent to a smaller degree in the NOx models. Also the 

SPILL term in the sulfiir model appeared to show that the Nash behavior became stronger 

and more significant over time, as if nations began to learn how increased spillins made 

their emission reductions less necessary. 

The cooperative solution will be diflBcult to achieve without additional incentives, 

because a neighbor's emission reductions are a good substitute for one's own emission 

reductions. Thus, side payments, cultural exchanges, or other treaties will be necessary 
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for nations to coordinate their emission reduction efforts and reduce or eliminate their 

non-cooperative behavior. If however, emission reductions come to be regarded as 

complements to other desirable commodities or activities, then non-cooperative behavior 

would also be reduced. 

The knowledge gained from the empirical and theoretical results is directly 

applicable to future treaty formation. Future emission treaties should take into account 

the number of nations, the uncertainty of the benefits of pollution reduction, the relevant 

spatial weight matrices, the technology of public supply, the transactions costs, and the 

number and sources of the emissions. The Helsinki and Sofia Protocols appeared to have 

taken differences in the pollutants into account when the targets were set but did not take 

into account differences between nations because every nation was required to meet the 

same standard. Future pollution control treaties will come closer to achieving a least-cost 

cooperative solution if emission reduction targets are set based on differences in both 

spillins among nations and in emission reduction costs. The Oslo Protocol of 1994 has 

taken differences among nations into account because the mandated emission reductions 

for each nation are no longer the same as they were under the Helsinki and Sofia 

Protocols. 

Additions to Public Goods Theory 

When discussing commons problems, traditional public goods theory does not 

distinguish impure public goods based on the degree of rivalry and excludability of the 
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good, nor the good's technology of public supply. This dissertation has shown that such 

distinctions are necessary for both empirical and theoretical reasons. In addition, game 

theory can be made more relevant to impure public goods, such as pollution, by using 

spatial weight matrices which show how the benefits (or costs) of the good are distributed 

among players. Differing spatial weights affect both equilibrium outcomes, as well as the 

payoff structure. The payoff structure can also be changed substantially when the spatial 

weight matrix is nonsymmetric, as it is for many types of pollutants. Finally, it was shown 

that the technology of public supply adds an additional dimension to game theory and 

public goods problems. 

On the empirical side, spatial econometrics offers an alternative to traditional 

public good models because the use of spatial weight matrices allows economists to 

examine a wider variety of public goods' problems. Non-symmetric spatial weight 

matrices allow questions dealing with air and water pollution to be examined, because 

wind directions or the way a river flows can be represented with this type of matrix. The 

results of this dissertation have shown the importance of using nonsymmetric spatial 

weights in empirical modeling because they turned out to possess significant explanatory 

power in determining the European nations' emission reduction decisions. 

Future Research 

The findings of this study point to several areas for future research. Obviously, the 

first research objective is the application of the spatial SUR model to the post-1990 period 
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to see if the model's results are consistent with the new data and the new countries, and 

whether cooperation has increased in this post-treaty period. Secondly, a new theoretical 

model, possibly built on the median voter model, should be developed to see if it can 

better explain NOx emission reductions. Third, the spatial SUR model should be applied 

to other impure public pollutants such as ammonia and Voluntary Organic Compounds 

(VOCs). This will show how robust the theoretical model is for explaining other types of 

emissions. Fourth, a computer simulation using the data and results from my dissertation 

can be developed to simulate the European nations' emission reductions of transboundary 

pollutants. This simulation will allow one to determine the eflfects of different spatial 

weight matrices and control costs on achieving a stable equilibrium emissions level. These 

results can then be compared with actual behavior to see how close nations are to reaching 

an equilibrium. Fifth, the application of spatial econometrics to other impure public goods 

problems at the national, urban, and regional level is needed. And sixth, the theoretical 

model should be developed further to incorporate more advanced game theoretic ideas 

such as signaling, incomplete information, and multi-stage games, because these ideas 

allow a much more realistic examination of the process of treaty formation and adherence. 

For example, incomplete information is a more reasonable assumption for transboundary 

pollutants because the long-term health and environmental eflfects are still not known with 

certainty. Multi-stage games also give extra freedom in examining pollution control 

treaties because nations make reduction decisions in the first stage, before targets have 

been set. Then, more decisions are made in the stage before the target reduction deadline 
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is reached, and finally, there is a final stage that occurs after the deadline has passed and 

before the next treaty takes affect. Allowing signaling in the model may help examine the 

unportance of Leader-Follower behavior because some countries serve as the initiators of 

emission reduction treaties (such as Germany, and the Scandinavian countries) which 

sends a signal to the other countries about future emission policy that may have some 

effect (positive or negative) on their emissions' policy. 
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